HYDROGEOLOGIC ASSESSMENT REPORT POWERTON GENERATING STATION PEKIN, ILLINOIS

SUBMITTED BY: MIDWEST GENERATION, LLC 235 REMINGTON BLVD, SUITE A BOLINGBROOK, ILLINOIS 60440

SUBMITTED TO: ILLINOIS ENVIRONMENTAL PROTECTION AGENCY 1021 N GRAND AVENUE EAST SPRINGFIELD, ILLINOIS 62702

> PREPARED BY: PATRICK ENGINEERING INC. 4970 VARSITY DRIVE LISLE, ILLINOIS 60532

PATRICK PROJECT No. 21053.070

FEBRUARY 2011

MWG13-15_7081 COMP. EX. 138

TABLE OF CONTENTS

1.0 INTRODUCTION
1.1 Background
1.2 Site Location and Description
1.3 Regional Setting1
2.0 HYDROGEOLOGIC ASSESSMENT METHODOLOGY
2.1 Evaluation of Ash-Related Constituents Migration Potential
2.1.1 Installation of Groundwater Monitoring Wells
2.1.2 Initial Groundwater Sampling and Analytical Testing
2.2 Characterization of Subsurface Hydrogeology
2.2.1 Site Lithology
2.2.2 Topographic and Water Elevation Surveys
2.2.3 Hydraulic Testing of Selected Wells
2.3 Identification of Potable well Use
3.0 HYDROGEOLOGIC ASSESSMENT RESULTS.
3.1 Evaluation of Ash-Related Consituents Migration Potential
3.2 Characterization of Subsurface Hydrogeology
3.3 Identification of Potable Well Use
4.0 LONG-TERM MONITORING PLAN
TABLES
TABLES Table 1 – Groundwater Field Parameter Data
TABLESTable 1 – Groundwater Field Parameter DataTable 2 – Groundwater Analytical Results
TABLESTable 1 – Groundwater Field Parameter DataTable 2 – Groundwater Analytical ResultsTable 3 – Groundwater Elevation Survey Data
TABLES Table 1 – Groundwater Field Parameter Data Table 2 – Groundwater Analytical Results Table 3 – Groundwater Elevation Survey Data
TABLES Table 1 – Groundwater Field Parameter Data Table 2 – Groundwater Analytical Results Table 3 – Groundwater Elevation Survey Data FIGURES Figure 1 – Site Levation M
TABLES Table 1 – Groundwater Field Parameter Data Table 2 – Groundwater Analytical Results Table 3 – Groundwater Elevation Survey Data FIGURES Figure 1 – Site Location Map Figure 2 – Ash Dord L continue Map
TABLES Table 1 – Groundwater Field Parameter Data Table 2 – Groundwater Analytical Results Table 3 – Groundwater Elevation Survey Data FIGURES Figure 1 – Site Location Map Figure 2 – Ash Pond Locations Map Figure 3 – Monitoring Wall L section Map
TABLES Table 1 – Groundwater Field Parameter Data Table 2 – Groundwater Analytical Results Table 3 – Groundwater Elevation Survey Data FIGURES Figure 1 – Site Location Map Figure 2 – Ash Pond Locations Map Figure 3 – Monitoring Well Location Map Figure 4 – Cross Section A-A'
TABLES Table 1 – Groundwater Field Parameter Data Table 2 – Groundwater Analytical Results Table 3 – Groundwater Elevation Survey Data FIGURES Figure 1 – Site Location Map Figure 2 – Ash Pond Locations Map Figure 3 – Monitoring Well Location Map Figure 4 – Cross Section A-A' Figure 5 – Potentiometric Surface Map
TABLESTable 1 – Groundwater Field Parameter DataTable 2 – Groundwater Analytical ResultsTable 3 – Groundwater Elevation Survey DataFIGURESFigure 1 – Site Location MapFigure 2 – Ash Pond Locations MapFigure 3 – Monitoring Well Location MapFigure 4 – Cross Section A-A'Figure 5 – Potentiometric Surface Map
TABLES Table 1 – Groundwater Field Parameter Data Table 2 – Groundwater Analytical Results Table 3 – Groundwater Elevation Survey Data FIGURES Figure 1 – Site Location Map Figure 2 – Ash Pond Locations Map Figure 3 – Monitoring Well Location Map Figure 4 – Cross Section A-A' Figure 5 – Potentiometric Surface Map
TABLES Table 1 – Groundwater Field Parameter Data Table 2 – Groundwater Analytical Results Table 3 – Groundwater Elevation Survey Data FIGURES Figure 1 – Site Location Map Figure 2 – Ash Pond Locations Map Figure 3 – Monitoring Well Location Map Figure 4 – Cross Section A-A' Figure 5 – Potentiometric Surface Map APPENDICES Appendix A – Soil Boring Logs
TABLES Table 1 – Groundwater Field Parameter Data Table 2 – Groundwater Analytical Results Table 3 – Groundwater Elevation Survey Data FIGURES Figure 1 – Site Location Map Figure 2 – Ash Pond Locations Map Figure 3 – Monitoring Well Location Map Figure 4 – Cross Section A-A' Figure 5 – Potentiometric Surface Map Appendix A – Soil Boring Logs Appendix B – Figure - Potable Wells Within 2,500 Feet (NRT – July 2009)
TABLESTable 1 – Groundwater Field Parameter DataTable 2 – Groundwater Analytical ResultsTable 3 – Groundwater Elevation Survey DataFIGURESFigure 1 – Site Location MapFigure 2 – Ash Pond Locations MapFigure 3 – Monitoring Well Location MapFigure 4 – Cross Section A-A'Figure 5 – Potentiometric Surface MapAppendix A – Soil Boring LogsAppendix B – Figure - Potable Wells Within 2,500 Feet (NRT – July 2009)Appendix C – Laboratory Analytical Reports
TABLESTable 1 – Groundwater Field Parameter DataTable 2 – Groundwater Analytical ResultsTable 3 – Groundwater Elevation Survey DataFIGURESFigure 1 – Site Location MapFigure 2 – Ash Pond Locations MapFigure 3 – Monitoring Well Location MapFigure 4 – Cross Section A-A'Figure 5 – Potentiometric Surface MapAppendix A – Soil Boring LogsAppendix B – Figure - Potable Wells Within 2,500 Feet (NRT – July 2009)Appendix C – Laboratory Analytical ReportsAppendix D – Hydraulic Conductivity Testing Data
TABLESTable 1 – Groundwater Field Parameter DataTable 2 – Groundwater Analytical ResultsTable 3 – Groundwater Elevation Survey DataFIGURESFigure 1 – Site Location MapFigure 2 – Ash Pond Locations MapFigure 3 – Monitoring Well Location MapFigure 4 – Cross Section A-A'Figure 5 – Potentiometric Surface MapAppendix A – Soil Boring LogsAppendix B – Figure - Potable Wells Within 2,500 Feet (NRT – July 2009)Appendix C – Laboratory Analytical ReportsAppendix D – Hydraulic Conductivity Testing Data
TABLESTable 1 – Groundwater Field Parameter DataTable 2 – Groundwater Analytical ResultsTable 3 – Groundwater Elevation Survey DataFIGURESFigure 1 – Site Location MapFigure 2 – Ash Pond Locations MapFigure 3 – Monitoring Well Location MapFigure 4 – Cross Section A-A'Figure 5 – Potentiometric Surface MapAppendix A – Soil Boring LogsAppendix B – Figure - Potable Wells Within 2,500 Feet (NRT – July 2009)Appendix C – Laboratory Analytical ReportsAppendix D – Hydraulic Conductivity Testing Data

MWG13-15_7082

Hydrogeologic Assessment Report Powerton Generating Station Midwest Generation, LLC Illinois Environmental Protection Agency February 28, 2011 21053.070 Page 1 of 9

1.0 INTRODUCTION

1.1 Background

Pursuant to the request of the Illinois Environmental Protection Agency (Illinois EPA), this document presents the Hydrogeologic Assessment Report for the on-site ash pond areas at the Midwest Generation, LLC (MWG) Powerton Generating Station in Pekin, Illinois. This hydrogeologic assessment was performed in accordance with the Hydrogeologic Assessment Plan, approved by the Illinois EPA, dated September 3, 2010.

As defined by the Hydrogeologic Assessment Plan, the purpose of this investigation was to: (i) evaluate the potential, if any, for migration of ash-related constituents from the on-site ash ponds and to conduct monitoring for groundwater constituents regulated by the Illinois Part 620 groundwater standards, as requested by the Illinois EPA; (ii) characterize the subsurface hydrogeology; and (iii) identify potable well use within 2,500 feet of the ash ponds. The results of this investigation are described in this Hydrogeologic Assessment Report.

<u>1.2 Site Location and Description</u>

The Powerton facility (the Site) is located in Section 9, Township 24 North, Range 5 West, in the City of Pekin, Tazewell County, Illinois. Figure 1 provides a Site Location Map.

The site contains three active ash ponds. Each ash pond is lined with 12" of geo-composite material on the bottom, and a geo-membrane liner on the side slopes; the total area of the three ash ponds is approximately 11 acres. One former ash pond that is no longer used is located east of the current ash ponds; it has been partially filled but still contains some ash. Figure 2 shows the locations of the three active and one former ash ponds.

1.3 Regional Setting

The Site is located along the Illinois River south and west of the city of Pekin. The surrounding land use consists of the Illinois River to the north, industrial and residential properties to the east, agricultural land to the south, and Lake Powerton to the west.

Hydrogeologic Assessment Report Powerton Generating Station Midwest Generation, LLC Illinois Environmental Protection Agency February 28, 2011 21053.070 Page 2 of 9

Patrick Engineering Inc. (Patrick) conducted a review of publically available geological information from the Illinois State Geological Survey website. Based upon water well logs from the area, the geology beneath the Site consists of approximately 100 to 125 feet of unconsolidated deposits (mainly alluvial sands and gravels with some minor clay), underlain by the Carbondale Formation, which consists of alternating layers of limestone, shale, coal, and underclay.

Groundwater flow in the shallow, unconsolidated aquifer should be largely controlled by the Illinois River with groundwater flowing towards the river during most periods of the year.

2.0 HYDROGEOLOGIC ASSESSMENT METHODOLOGY

The following sections present the methodologies used to evaluate the potential for migration of ash-related constituents from the ash ponds and to monitor for all Part 620-regulated constituents, to characterize the subsurface hydrogeology, and to identify potable well use within 2,500 feet of the Site.

2.1 Evaluation of Ash-Related Constituents Migration Potential

The Illinois EPA requested that an evaluation of the potential for migration of ash-related constituents from the ash ponds and that monitoring for all Part 620-regulated constituents be performed in accordance with the groundwater standards included in 35 Illinois Administrative Code (IAC) Part 620, Subparts C and D. Accordingly, groundwater monitoring wells were installed at the Site in locations both upgradient and downgradient of the ash ponds.

2.1.1 Installation of Groundwater Monitoring Wells

Patrick installed ten (10) groundwater monitoring wells spaced approximately 400 feet apart around the perimeter of the ash ponds. The well locations were selected so that both upgradient and downgradient wells were represented, based upon available data regarding the expected groundwater flow direction. The spacing of the well locations at the Site along the downgradient edge of the ash ponds was calculated so as to detect a groundwater plume emanating from a point source beneath the ash ponds. Figure 3 shows the location of the ten monitoring wells.

Two of the installed monitoring wells are located upgradient of the ash ponds; the additional eight wells are located down/side-gradient of the ash ponds. The well borings were advanced using hollow-stem augers to depths ranging from 30 to 45 feet below ground surface (bgs). Borings were terminated after the field geologist determined that the boring was installed approximately 10 feet past the first intersection of the groundwater table in order to ensure that a representative groundwater sample could be obtained. Upon termination of each boring, a 2-inch

Hydrogeologic Assessment Report Powerton Generating Station Midwest Generation, LLC Illinois Environmental Protection Agency February 28, 2011 21053.070 Page 4 of 9

diameter, PVC well was installed in order to collect samples of the groundwater in the uppermost aquifer. The monitoring wells were completed to approximately 3 feet above grade, with PVC casing, and were covered with a stick-up, steel well protector with a locking cap. Soil lithology was inspected and logged by an experienced geologist during the boring process. Boring logs with well construction information are included as Appendix A.

2.1.2 Initial Groundwater Sampling and Analytical Testing

The groundwater sampling event for the Site took place on December 6, 2010. The groundwater elevation in each of the ten wells was measured prior to sampling. Groundwater samples were collected from each well with a peristaltic pump, using established low-flow sampling techniques. Temperature, pH, and conductivity measurements were taken using a portable meter in all wells; refer to Table 1 for these field parameter results. All groundwater samples were filtered in the field using a disposable, 0.45µm, in-line filter to allow for the analytical testing of dissolved compounds. The samples were immediately placed on ice in a cooler and kept at a temperature of no higher than 4° F. The samples were transported to PDC Laboratories, Inc. (PDC), an Illinois-EPA accredited analytical laboratory, in accordance with chain-of-custody procedures to maintain the integrity of the samples.

The analytical laboratory tested groundwater samples from each of the wells for the compounds listed in Table 2. Analytes tested include the inorganic compounds listed in 35 IAC 620.410(a), excluding both radium and the poly-aromatic hydrocarbons (PAHs) listed in 35 IAC 620.410(b).

2.2 Characterization of Subsurface Hydrogeology

The subsurface hydrogeology beneath the ash ponds was characterized by determining Site lithology and the groundwater flow patterns in the vicinity of the ash ponds as described below.

Hydrogeologic Assessment Report Powerton Generating Station Midwest Generation, LLC Illinois Environmental Protection Agency February 28, 2011 21053.070 Page 5 of 9

2.2.1 Site Lithology

The Site lithology was determined by logging soil samples collected from the soil borings created during the installation of the groundwater monitoring wells. The soil borings were installed under the direction of an experienced geologist. Each boring was sampled at 2-foot intervals using a 2-inch O.D. split-spoon sampler (ASTM D 1586). Each soil sample was inspected and logged by the geologist during the boring process. Boring logs with well construction information are provided as Appendix A.

2.2.2 Topographic and Water Elevation Surveys

A survey crew measured both the top-of-casing and ground surface elevations of all installed monitoring wells and the groundwater elevations within each of the monitoring wells on November 4, 2010. The survey crew concurrently measured the water elevation in all four of the ash ponds, the intake and outfall channels, and the Illinois River.

2.2.3 Hydraulic Testing of Selected Wells

Patrick conducted five *in situ* hydraulic conductivity tests on wells MW-2, MW-5, MW-8, MW-9, and MW-10 on December 16, 2010. The testing consisted of one rising-head and one falling-head slug test performed at each well. Using a data-logging pressure transducer, Patrick measured the rate of groundwater level recovery in the wells after either inserting a slug into, or removing a slug from, each monitoring well.

2.3 Identification of Potable Well Use

Natural Resource Technology, Inc. (NRT) has previously completed an investigation of potable water well use within 2,500 feet of the Powerton ash ponds. MWG submitted the results of this investigation to the Illinois EPA by letter dated July 15, 2009. These results are summarized in Appendix B.

Hydrogeologic Assessment Report Powerton Generating Station, LLC Midwest Generation, LLC Midwest Generation, LLC Rebruary 28, 2011 7053.070 7053.070 986 6 of 9

VII EDISON INTERNATIONAL 44 Company

The following databases and sources of information were used in order to identify local community water sources and water well locations in the vicinity of the Site:

• Illinois State Geological Survey (ISGS) -Water Well Database Query;

• Illinois State Water Survey (ISWS) Private Well Database and water well construction report request; and

• Illinois Division of Public Water Supply web-based Geographic System (GIS) files.

3.0 HYDROGEOLOGIC ASSESSMENT RESULTS

3.1 Evaluation of Ash-Related Constituent Migration Potential

The analytical laboratory results for the hydrogeologic assessment are presented in Table 2. Full laboratory data packages from PDC are provided as Appendix C. Manganese and boron were detected in one or more monitoring wells at concentrations exceeding the Part 620 Class I Groundwater Quality Standards. In some cases, the highest concentrations of a given compound were found in the upgradient wells. Antimony, beryllium, cadmium, copper, cyanide, lead, mercury, silver, thallium, zinc, nitrogen/nitrite, and nitrogen/nitrate/nitrite were not detected in any of the groundwater samples.

A determination of the potential for the individual ash ponds to be contributing to the distribution of analytes in the underlying groundwater and the extent, if any, of such contribution cannot be made from the results of this single sampling event alone. To develop a true, statisticallysignificant upgradient background concentration for the various compounds will require a number of sequential sampling events over time. Based on a statistically developed background value, downgradient concentrations can be compared to the background value over time to determine the likelihood and extent of any constituent migration from the on-site ash ponds. A plan to develop such an analytical database through additional sampling is presented in the last section of this report.

3.2 Characterization of Subsurface Hydrogeology

The lithology of the Site is predominantly fine sand fill underlain with sand and gravel; a silt seam runs through a portion of the Site. Refer to Figure 4 for a geologic cross-section of the Site.

The results of the topographic and water elevation surveys are presented in Table 3.

The uppermost groundwater unit at the Site is found at depths ranging from 18 to 28 feet bgs. The direction of groundwater flow is to the north/northwest towards the Illinois River, which

Hydrogeologic Assessment Report Powerton Generating Station Midwest Generation, LLC Illinois Environmental Protection Agency February 28, 2011 21053.070 Page 8 of 9

runs along the northern boundary of the Site. The hydraulic gradient is approximately 0.0056 based upon the groundwater elevation data collected on November 4, 2010. A potentiometric surface map is provided as Figure 5. Note that several of the wells indicated groundwater elevations either higher or lower than what is indicated by the potentiometric surface (MW-2, MW-6, and MW-8). These apparent anomalies could be due to localized differences in lithology or localized areas of higher recharge. Patrick will continue to refine the potentiometric surface map with the additional groundwater elevation data that will be collected during the proposed quarterly sampling events.

Patrick used the hydraulic testing data to calculate the hydraulic conductivity of the uppermost aquifer using the Bouwer and Rice method. Hydraulic conductivity calculations are provided in Appendix D. The hydraulic conductivity of Site soils ranged from 7.41 x 10^{-4} to 9.24 x 10^{-3} ft/second. The average hydraulic conductivity was 4.7 x 10^{-3} ft/second. Using the highest calculated hydraulic conductivity and the measured hydraulic gradient, Patrick calculated the maximum groundwater velocity to be approximately 2.27 ft/day (4.7 x 10^{-3} ft/sec x 0.0056 x 60 sec/min x 60 min/hour x 24 hours/day).

3.3 Identification of Potable Well Use

As stated above, NRT has previously completed an investigation of potable water well use within 2,500 feet of the Powerton ash ponds. MWG submitted the results of this investigation to the Illinois EPA by letter dated July 15, 2009. According to this letter, six wells are located within a 2,500-foot radius of the ash ponds (see Appendix B), each of which is screened below 50 feet. None of these wells are located downgradient from the ash ponds. Two of these wells supply Powerton Station with water.

4.0 LONG-TERM MONITORING PLAN

In order to properly assess the groundwater monitoring data collected in this single sampling event, MWG will conduct a quarterly groundwater sampling program in which the same monitoring wells described in this report will be sampled for the identical analyte list employed during this investigation. MWG proposes to begin this quarterly monitoring program in March 2011, and will submit the results of the sampling program to the Illinois EPA on an ongoing, quarterly basis. MWG proposes to continue this program until sufficient statistically-significant data is available to properly assess the groundwater data. If the quarterly sampling results continue to show non-detect results for certain of the analytes, as was the case in this single sampling event, MWG may propose to Illinois EPA that these analytes be eliminated from future sampling events.

Table 1 GROUNDWATER FIELD PARAMETER DATA Powerton Station, Pekin, Illinois Midwest Generation 21053.070 Feb. 28, 2011

.

RATRICK ENGINEERING	Field Paramter Data - Powerton Station								
Monitoring	itoring Conductance Temperature								
Well	Well Date Time (S/cm)*			°C	рН				
MW-01	12/15/2010	14:01	0.933	10.43	7.72				
MW-01	12/15/2010	14:03	0.957	10.45	7.58				
MW-01	12/15/2010	14:05	0.920	10.44	7.53				
MW-01	12/15/2010	14:07	0.922	10.52	7.48				
MW-01	12/15/2010	14:09	0.926	10.23	7.46				
MW-01	12/15/2010	14:11	0.919	10.45	7.46				
MW-01	12/15/2010	14:13	0.919	10.47	7.46				
MW-02	12/15/2010	10:30	0.97	13.87	7.89				
MW-02	12/15/2010	10:32	0.98	13.92	7.90				
MW-02	12/15/2010	10:34	0.97	13.86	7.91				
MW-02	12/15/2010	10:36	0.97	13.97	7.91				
MW-02	12/15/2010	10:38	0.97	14.02	7.91				
MW-02	12/15/2010	10:40	0.96	14.01	7.91				
MW-03	12/15/2010	12:30	0.910	17.08	7.43				
MW-03	12/15/2010	12:32	0.905	17.02	7.44				
MW-03	12/15/2010	12:34	0.893	16.99	7.43				
MW-03	12/15/2010	12:36	0.892	17.12	7.43				
MW-03	12/15/2010	12:38	0.905	16.67	7.43				
MW-03	12/15/2010	12:40	0.898	17.07	7.43				
MW-04	12/15/2010	11:49	1.31	16.07	7.24				
MW-04	12/15/2010	11:51	1.30	16.28	7.27				
MW-04	12/15/2010	11:53	1.29	16.24	7.27				
MW-04	12/15/2010	11:55	1.09	16.19	7.28				
MW-04	12/15/2010	11:57	1.29	16.21	7.28				
MW-04	12/15/2010	11:59	1.29	16.06	7.27				
MW-04	12/15/2010	12:01	1.29	16.30	7.27				
MW-05	12/15/2010	11:11	1.35	14.88	7.24				
MW-05	12/15/2010	11:13	1.35	14.79	7.25				
MW-05	12/15/2010	11:15	1.36	14.85	7.24				
MW-05	12/15/2010	11:17	1.35	14.90	7.24				
MW-05	12/15/2010	11:19	1.34	14.80	7.24				
MW-05	12/15/2010	11:21	1.33	14.86	7.25				
MW-05	12/15/2010	11:23	1.33	14.80	7.24				
MW-06	12/15/2010	14:52	1.67	24.47	7.68				
MW-06	12/15/2010	14:54	1.69	24.46	7.68				

.

Table 1 GROUNDWATER FIELD PARAMETER DATA Powerton Station, Pekin, Illinois Midwest Generation 21053.070 Feb. 28, 2011

.

PATRICK	Field Paramter Data - Powerton Station								
Monitoring	g Conductance Temperature								
Well	Date	Time	(S/cm)*	°C	pН				
MW-06	12/15/2010	14:56	1.68	24.44	7.68				
MW-06	12/15/2010	14:58	1.66	24.43	7.67				
MW-06	12/15/2010	15:00	1.67	24.46	7.68				
MW-06	12/15/2010	15:02	1.65	24.53	7.67				
MW-08	12/15/2010	15:28	1.65	20.07	8.22				
MW-08	12/15/2010	15:30	1.64	20.00	8.22				
MW-08	12/15/2010	15:32	1.64	20.10	8.23				
MW-08	12/15/2010	15:34	1.62	20.05	8.24				
MW-08	12/15/2010	15:36	1.62	19.99	8.24				
MW-08	12/15/2010	15:38	1.61	20.01	8.24				
MW-08	12/15/2010	15:40	1.62	19.95	8.24				
MW-09	12/16/2010	8:51	0.905	14.45	7.28				
MW-09	12/16/2010	8:53	0.901	14.54	7.24				
MW-09	12/16/2010	8:55	0.903	14.61	7.23				
MW-09	12/16/2010	8:57	0.894	14.61	7.22				
MW-09	12/16/2010	8:59	0.910	14.60	7.22				
MW-09	12/16/2010	9:01	0.905	14.61	7.22				
MW-10	12/15/2010	9:43	0.999	11.80	7.04				
MW-10	12/15/2010	9:45	1.020	11.67	7.05				
MW-10	12/15/2010	9:47	1.020	11.79	7.05				
MW-10	12/15/2010	9:49	1.000	11.82	7.05				
MW-10	12/15/2010	9:51	1.000	11.84	7.04				
MW-10	12/15/2010	9:53	0.990	11.64	7.04				
MW-10	12/15/2010	9:55	0.990	11.72	7.04				
MW-11	12/16/2010	10:18	1.27	12.61	7.88				
MW-12	12/16/2010	9:38	1.71	16.84	7.70				
MW-12	12/16/2010	9:40	1.71	16.95	7.64				
MW-12	12/16/2010	9:42	1.70	16.92	7.64				
MW-12	12/16/2010	9:44	1.70	16.67	7.65				
MW-12	12/16/2010	9:46	1.69	16.85	7.65				
MW-12	12/16/2010	9:48	1.69	16.90	7.65				
MW-13	12/16/2010	12:26	3.33	12.59	7.68				
MW-14	12/16/2010	11:43	2.64	17.12	7.48				
MW-14	12/16/2010	11:45	2.65	17.28	7.51				
MW-14	12/16/2010	11:47	2.64	17.22	7.53				
MW-14	12/16/2010	11:49	2.63	17.19	7.54				

P:\Lisle\Midwest Generation\21053.070 Ash Pond Assessments\Powerton\HA Report\Tables\TABLE 1- Powerton Groundwater Field Parameter Data Table

Table 1 GROUNDWATER FIELD PARAMETER DATA Powerton Station, Pekin, Illinois Midwest Generation 21053.070 Feb. 28, 2011

PATRICK	Field Paramter Data - Powerton Station										
Monitoring	-		Conductance	Temperature							
Well	Date	Time	(S/cm)*	°C	рН						
MW-14	12/16/2010	11:51	2.62	17.25	7.54						
MW-14	12/16/2010	11:53	2.61	17.28	7.55						
MW-15	12/16/2010	10:52	1.79	15.97	7.48						
MW-15	12/16/2010	10:54	1.77	16.16	7.44						
MW-15	12/16/2010	10:56	1.75	15.96	7.44						
MW-15	12/16/2010	10:58	1.79	16.16	7.44						
MW-15	12/16/2010	11:00	1.78	15.90	7.44						
MW-15	12/16/2010	11:02	1.79	16.00	7.43						
MW-15	12/16/2010	11:04	1.78	15.96	7.43						

Notes:

* (S/cm)

cm) Specific Conductivity measured in Seconds/Centimeters

Table 2 GROUNDWATER ANALYTICAL RESULTS Powerton Station, Pekin, Illinois Midwest Generation 21053.070 Feb. 28, 2011

				:	1					
		Groundwater	MW-1	MW-9	MW-10	MW-2	MW-3	MW-4	MW-5	MW-6
PATHICK	Sample Analysis	Quality Standard*	. 11	- -	f r			/T	mat	maЛ
ENGINEERING	Method	(mg/L)	mg/L	mg/L	mg/L 12/15/10	12/1#/10	12/15/10	12/15/10	12/15/10	12/15/10
		Class I	12/15/10	12/10/10	12/15/10	12/15/10	14/15/10	12/15/10	12/15/10	14/15/10
Chemical Name		0.000	NID	2.173	ND	ND	ND	ND	NITY	ND
Antimony	Metals 6020	0.006	ND		ND			ND	0.0011	0.0042
Arsenic	Metals 6020	0.05	ND	ND	ND	0.0018	0.0017	ND	0.0011	0.0042
Barium	Metals 6020	2.0	0.044	0.038	0.24	0.042	0.038	0.055	0.053	0.11
Beryllium	Metals 6020	0.004	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	Metals 6020	0.005	ND	ND	ND	ND	ND	ND	ND	ND
Chromium	Metals 6020	0.1	ND	ND	ND	ND	ND	0.0045	0.0044	0.006
Cobalt	Metals 6020	1.0	ND	ND	0.0026	ND	ND	ND	0.0025	ND
Copper	Metals 6020	0.65	ND	ND	ND	ND	ND	ND	ND	ND
Cyanide	Dissolved 9014	0.2	ND	ND	ND	ND	ND	ND	ND	ND
Iron	Metals 6020	5.0	ND	ND	ND	ND	ND	ND	0.013	1.6
Lead	Metals 6020	0.0075	ND	ND	ND	ND	ND	ND	ND	ND
Manganese	Metals 6020	0.15	ND	0.23	2.1	ND	0.0047	0.77	0.51	0.68
Mercury	Mercury 7470A	0.002	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	Metals 6020	0.1	0.01	0.01	0.015	0.0086	0.011	0.012	0.014	0.0091
Selenium	Metals 6020	0.05	0.0016	0.0024	0.0042	0.0017	ND	0.0022	0.0019	0.0034
Silver	Metals 6020	0.05	ND	ND	ND	ND	ND	ND	ND	ND
Thallium	Metals 6020	0.002	ND	ND	ND	ND	ND ND	ND	ND	ND
Zinc	Metals 6020	5.0	ND	ND	ND	ND	ND	ND	ND	0.0064
Boron	Metals 6020	2	0.45	2.1	0.48	0.38	0.75	0.77	0.95	0.5
Sulfate	Dissolved 9038	400	50	110	62	52	64	110	160	210
Chloride	Dissolved 9251	200	46	25	40	45	39	150	150	180
Nitrogen/Nitrate	Nitrogen By calc	10	7.2	2.9	3	7.5	9.4	0.34	ND	0.037
Total Dissolved Solids	Dissolved 2540C	1,200	490	500	530	480	480	680	740	950
Fluoride	Dissolved 4500 FC	4	0.28	ND	ND	ND	0.3	0.3	0.27	0.65
Nitrogen/Nitrite	Dissolved 4500 NO2	NA	ND	ND	ND	ND	ND	ND	ND	ND
Nitrogen/Nitrate/Nitrite	Dissolved 4500 NO3	NA	ND	ND	ND	ND	ND	ND	ND	ND

Notes:

*Class I Groundwater Standards from 35 IAC Part 620 Bold values show exceedences of 35 IAC Part 620 ND-non detect Determinations of upgradient and downgradient wells are preliminary mg/L = milligrams per liter -Determination of the potential for the individual ash ponds to be contributing to the distribution of analytes in the underlying groundwater cannot be made from the results of this single sampling event alone. To develop a true, statistically-significant upgradient background concentration for the various compounds will require a number of sequential sampling events over time. After a statistically developed background value is available, the downgradient concentrations can be compared to this background value over time to determine the likelihood of contaminant migration from the on-site ash ponds. A plan to develop such an analytical database through additional sampling is discussed in the last section of this report. .

Table 2 GROUNDWATER ANALYTICAL RESULTS Powerton Station, Pekin, Illinois Midwest Generation 21053.070 Feb. 28, 2011

	Sample Analysis Method	e Analysis Quality Standard* Iethod (mg/L) Class I		MW-8 mg/L 12/15/10
Chemical Name	16 . 1 (000	0.000	NID	
Antimony	Metals 6020	0.006	ND	ND
Arsenic	Metals 6020	0.05	0.026	0.0052
Barium	Metals 6020	2.0	0.55	0.11
Beryllium	Metals 6020	0.004	ND	ND
Cadmium	Metals 6020	0.005	0.0026	ND
Chromium	Metals 6020	0.1	0.0088	ND
Cobalt	Metals 6020	1.0	0.017	ND
Copper	Metals 6020	0.65	0.14	ND
Cyanide	Dissolved 9014	0.2	ND	ND
Iron	Metals 6020	5.0	0.008	0.56
Lead	Metals 6020	0.0075	0.039	ND
Manganese	Metals 6020	0.15	3.5	0.15
Mercury	Mercury 7470A	0.002	ND	ND
Nickel	Metals 6020	0.1	0.0045	0.011
Selenium	Metals 6020	0.05	0.0043	0.0036
Silver	Metals 6020	0.05	ND	ND
Thallium	Metals 6020	0.002	ND	ND
Zinc	Metals 6020	5.0	0.076	ND
Boron	Metals 6020	2	0.6	0.93
Sulfate	Dissolved 9038	400	120	160
Chloride	Dissolved 9251	200	170	180
Nitrogen/Nitrate	Nitrogen By calc	10	0.043	ND
Total Dissolved Solids	Dissolved 2540C	1,200	860	890
Fluoride	Dissolved 4500 FC	4	0.47	0.77
Nitrogen/Nitrite	Dissolved 4500 NO2	NA	ND	ND
Nitrogen/Nitrate/Nitrite	Dissolved 4500 NO3	NA	ND	ND

Notes:

*Class I Groundwater Standards from 35 IAC Part 620 Bold values show exceedences of 35 IAC Part 620 ND-non detect

mg/L = milligrams per liter

-Determination of the potential for the individual ash ponds to be contributing to the distribution of analytes in the underlying groundwater cannot be made from the results of this single sampling event alone. To develop a true, statistically-significant upgradient background concentration for the various compounds will require a number of sequential sampling events over time. After a statistically developed background value is Determinations of upgradient and downgradient wells are prelim^{available}, the downgradient concentrations can be compared to this background value over time to determine the likelihood of contaminant migration from the on-site ash ponds. A plan to develop such an analytical database through additional sampling is discussed in the last section of this report.

Table 3 WATER ELEVATION SURVEY DATA Powerton Station, Pekin, Illinois Midwest Generation 21053.070 Feb. 28, 2011

PATRICK	Water Elevation (feet)	Depth to Water (feet bgs)	Lid Elevation (feet)	Ground Elevation (feet)	Top of Riser Elevation (feet)
MONITORING WELLS					
MW-1	440.509	24.55	465.482	461.667	465.059
MW-2	435.692	26.73	462.863	459.246	462.422
MW-3	436.374	25.97	462.782	459.098	462.344
MW-4	433.649	26.83	460.891	457.290	460.479
MW-5	434.321	24.26	459.046	455.799	458.581
MW-6	445.906	18.56	464.842	461.224	464.466
MW-7	434.581	28.27	463.307	459.572	462.851
MW-8	447.093	24.64	472.115	468.698	471.733
MW-9	443.846	25.34	469.616	466.214	469.186
MW-10	440.466	16.92	457.827	454.093	457.386
MW-11	440.859	30.73	471.973	468.074	471.589
MW-12	449.960	23.42	473.778	469.999	473.380
MW-13	437.312	33.63	471.329	467.652	470.942
MW-14	445.949	24.84	471.198	467.666	470.789
MW-15	447.162	24.22	471.813	468.256	471.382
ASH PONDS					
AP-1	458.475	NS	NS	NS	NS
AP-2	451.949	NS	NS	NS	NS
AP-3 .	464.316	NS	NS	NS	NS
AP-4	454.348	NS	NS	NS	NS
AP-5	447.348	NS	NS	NS	NS
AP-6	447.340	NS	NS	NS	NS
CHANNELS					
Lake Channel	433.507	NS	NS	NS	NS
East Channel	434.694	NS	NS	NS	NS
West Channel	431.472	NS	NS	NS	NS
PONDS					
North Pond	439.015	NS	NS	NS	NS
South Pond	439.570	NS	NS	NS	NS

*Survey data taken on 11/3/10 and 11/4/10

NS= not surveyed

• '

bgs = below ground surface

Elevations are leveled from site control points per Drawing "Control Network, IL State Plane (West Zone) Powerton Station" revised 10/22/2010

P:\Lisle\Midwest Generation\21053.070 Ash Pond Assessments\Powerton\HA Report\Tables\TABLE 3-Powerton Groundwater elevation Table

PATRICK ENGINEERING INC.

CLIENT	Midwest Generation
PROJECT & NO.	21053.070
LOCATION	Powerton

BORING NUMBER

SHEET 1 OF 2

21053.070 Powerton

B-MW-1-Po

LOGGED BY	MPG	
GROUND ELE	VATION	461.7

.

ELEVATION	ОЕРТН (FT)	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW COUNTS	PL [Ur	Wat	er Con 3 ed Con ngth (T	tent 2 o 4 1pressi SF) 3	LL 0 50 Ve K 5	NOTES & TEST RESULTS
461.7	0.0		Brown coarse to fine sand, dry FILL	SS-1 1.0-2.5 14"R	3 4 4						qu=NT
				SS-2 3.5-5.0 12"R	3 3 5				-		Bentonite seal 3.0'-18.0'. Stickup protective cover installed. qu≏NT
				SS-3 6.0-7.5 12"R	2 6 8						qu=NT
				SS-4 8.5-10.0 10"R	2 5 8						qu=NT
			Trace coarse gravel	SS-5 11.0-12.5 8"R	5 9 10						qu=NT
				SS-6 13.5-15.0 12"R	3 6 6						qu≕NT
				SS-7 16.0-17.5 16"R	4 6 7						qu=NT
443.2	18.5		Brown coarse to medium sand, trace fine gravel, medium dense, saturated SW	SS-8 18.5-20.0 14"R	4 5 6						18.0'-30.0' qu=NT
DRILL DRILL DRILL DRILL	LING LING LING LING	CONT METH EQUII STAR	RACTOR Groff Testing IOD 4.25" I.D. HSA PMENT CME 550 ATV TED 10/4/10 ENDED 10/4/10	MARKS talled 2" diam nitoring well.	eter	PVC	¥ ₩	ATER 22.0	LEVI	<u>EL (ft.</u>)

	BORING NUMBER	B-MW-1-Po	SHEE
	CLIENT	Midwest Generation	
PATRICK ENGINEERING INC.	PROJECT & NO.	21053.070	
<u> </u>	LOCATION	Powerton	

T 2 OF 2

•

.

LOGGED BY MPG

GROU	IND E	LEV	ATION 461.7						
ELEVATION	DEPTH (FT)	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW COUNTS		Water Col 	$\begin{array}{ccc} \text{ntent} \\ \hline - & - & \text{LL} \\ \hline 30 & 40 & 50 \\ \hline \text{npressive} \\ \hline \text{TSF} & \\ \hline 3 & 4 & 5 \\ \hline 3 & 4 & 5 \\ \hline \end{array}$	NOTES & TEST RESULTS
441.7 439.7	20.0		∑	SS-9 21.0-22.5 15"R	· 4 5 5				Set screen (slot 0.010") 20.5'-30.5' qu=NT
				SS-10 23.5-25.0 18"R	444				Qu=NT
				SS-11 26.0-27.5 18"R	4 4 6				qu=NT
433.7	28.0		Coarse to fine gravel, some coarse sand, medium dense, saturated GP	SS-12 28.5-30.0 18"R	4 5 6				qu≃NT
429.2	32.5		End of Boring at 32.5	SS-13 31.0-32.5 18"R	4 6 7				qu=NT
		٠			name of the state				
					nan e vezeta e vezeta en la constante en la con				
					NAME AND A CARACTER AND A CAR				
	.ING (ING N ING E ING S		RACTOR Groff Testing OD 4.25" I.D. HSA PMENT CME 550 ATV TED 10/4/10 ENDED 10/4/10	EMARKS stalled 2" diamonitoring well.	eter F	vvc	<u>WATER</u> ⊈ 22.0 ¥ ¥	LEVEL (ft.)	1

PATRICK ENGINEERING INC.

CLIENT Midwest Generation PROJECT & NO. LOCATION

BORING NUMBER

SHEET 1 OF 2

B-MW-2-Po

21053.070

Powerton

LOGGED BY MPG GROUND ELEVATION 459.2

...

GROU	NDE	LEVA	459.2		,				
ELEVATION	DEPTH (FT)	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW COUNTS		Water Con 20 3 confined Corr Strength (T 2	tent $ \Delta$ LL - 40 50 pressive SF) $\#$ 4 5	NOTES & TEST RESULTS
459.2	0.0		Dark brown topsoil, silty clay, dry FILL						
457.7	1.5		Light brown coarse to fine sand, loose, dry FILL	SS-1 1.0-2.5 10"R	4 4 4		:		qu=NT
				SS-2 3.5-5.0 10"R	2 3 2				Bentonite seal 3.0'-20.0'. Stickup protective cover installed. qu=NT
				SS-3 6.0-7.5 12*R	3 3 4				qu≓NT
			Dry	SS-4 8.5-10.0 14"R	4 5 4				qu=NT
				SS-5 11.0-12.5 15"R	2 2 3				qu=NT
			Some fine gravel	SS-6 13.5-15.0 15"R	3 6 5				qu≕NT
				SS-7 16.0-17.5 18"R	2 5 6				qu=NT
439.2	20.0		Dry	SS-8 18.5-20.0 18"R	3 3 4				qu=NT
DRILL DRILL DRILL DRILL	ING C ING N ING E ING S	CONTI METHO EQUIP START	RACTOR Groff Testing OD 4.25" I.D. HSA MENT CME 550 ATV FED 10/5/10 ENDED 10/5/10	/ARKS alled 2" diamo hitoring well.	eter F	»VC	<u>WATER</u> ⊈ 24.0 ⊈	LEVEL (ft.)	

				BORING	NUMBER	1	B-MW-2	2-Po	S	HEET	2 OF 2	
Р/	ATR	ICK		CLIENT Midv			Vidwest Generation					
				PROJE	CT & NO.	2105	3.070					
				LOCATI	ON	Pov	verton					
LOGG	ED R	Y U EN A	MPG									
			ATION 459.2		l	<u></u>	·	Mato	Contont			
Ő	(FT)	_			SAMPLE	1			-O	LL	NOTES	
VAT	TH	ATA	SUIL/RUCK		TYPE & NO.	VTS	10			40 50 L		
IE/	ЕÞ	I.R.	DESCRIPTION		RECOVERY(IN)	<u>Š</u>		Streng	gth (TSF)	*	TEST RESULTS	
439.2	20.0	~~~~~	Light brown fine to medium sand we	1		mO		2	3	4 5	Sand nack	
		***	graded, medium dense, dry	•							20.0'-33.5'	
				FILL	SS-9	4					qu=NT	
		***			21.0-22.5	10						

435.7	23.5	<u></u>	- Gray coarse to fine gravel, coarse sa	nd.	SS-10	5					ou=NT	
435.2	24.0	<u>,</u> 0,1	Trace fine sand and silt, poorly graded	, ,	23.5-25.0	13					Set screen (slot	
		ိုင္ရရ	medium dense	GP	18"R	13					0.010") 23.5'-33.5'	
		$S_{\mathcal{O}}$		0i								
		ိုင္ရဲ										
		ၟၯၟ			5S-11 26 0-27.5	4					gu=NT	
		°õ q			18"R	8						
		$\mathcal{S}_{\mathcal{S}}$				{						
		°õ d										
		5 C			SS-12	7					qu=NT	
		°õ d			28.5-30.0	10						
		SC,										
		°õ d										
		2 2 2			SS-13	7					ou≓NT	
		2°			31.0-32.5	8					- ···	
					18"R	7						
		, V d										
	¢	2 2 d			33.5-35.0	69					qu≖NT	
424.2	25.0				18"R	10						
4 4 4,2	33.0	07	End of Boring at 35.0'			1						
:												
ļ										1		
								14/4-				
					IARNS					<u>:L (†t.)</u>		
				mon	itorina well.	eter F	-70	<u>⊻</u> 24	ŧ.U			
								Ϋ́				
	RILLING STARTED 10/5/10 ENDED 10/5/10											

.

.

PATRICK ENGINEERING INC.

BORING NUMBER CLIENT PROJECT & NO. LOCATION

SHEET 1 OF 2

21053.070 Powerton

B-MW-3-Po

Midwest Generation

LOGGED BY MPG

٠

GROUND ELEVATION 459.1									
Z	FT)			SAMPLE		PL	Water Coi	itent	NOTES
Ā	IJ, H	TA	SOIL/ROCK	TYPE & NO.	SE	10	20	30 40 50	NOTES &
ы Ш	F	A	DESCRIPTION	DEPTH (FT)	83	Unc	contined Col Strength (πpressive TSF) ₩	TEST RESULTS
<u> </u>	ä	5		RECOVERTIN	ш Ц	1	2	3 4 5	
458:6	8: 9		Dark brown sitty clay topsoil	4					
			Light brown coarse to medium sand, trace fine gravel, trace fine sand, very loose to	<u>ee 1</u>	2				queNIT
			loose, dry	1.0-2.5	1				40-141
			FILL	16"R	2				
									Bentonite seal
				SS-2	1				3.0'-20.0'. Stickup
				3.5~5.0 14"R	1				installed.
					-				qu=NT
				55-3	2				ou=NT
				6.0-7.5	2				40 111
				16"R	3				
-				SS-4	2				qu=NT
			Some fine sand	8.5-10.0 18"R	3				
					-				
			Light brown medium to fine sand loose dry		1				au=NT
			Eight brown median to sine band, 10000, aly	11.0-12.5	2				
				17"R	2				
	:								
				SS-6	4				qu=NT
				18"R	6				
				SS-7	2				qu=NT
				16.0-17.5	2				
				15"R	3				
]				
440.1	19.0			SS-8	3				qu=NT
			Brown coarse sand, trace fine gravel, well graded, very loose, wet	16"R	3				
					<u> </u>		1		
	JNG (CONT	RACTOR Groff Testing	MARKS			WATEF	R LEVEL (ft.))
	ING I	METH	OD 4.25" I.D. HSA Ins	talled 2" diam	eter F	PVC	☑ 23.0	, ,	-
	ING	EQUIF	MENT CME 550 ATV	nitoring well.		-	I		
	ING	STAP	TED 10/5/10 ENDED 10/5/10				Ī		
							1 ÷		

	BORING NUMBER	B-MW-3-Po	SHEET	2	OF	2
	CLIENT	Midwest Generation				
FAIRICK ENGINEERING INC.	PROJECT & NO.	21053.070				
		Powerton				
LOGGED BY MPG						

GROUND	FIF	:\/ΔΤΙ	אר	A#

N N	Ē			SAMPLE		PL c	Water Cor	itent		
Ē	÷		SOIL/ROCK	TYPE & NO	ഗ	· L	20		NOTES	
≶	È	\mathbf{z}	DESCRIPTION	DEPTH (ET)	≥Ë		confined Cor	<u> </u>	&	
Ш	μ	LH H	DESCRIPTION	RECOVERY(IN)	6S		Strength (TSF) ¥	TEST RESULTS	
<u> </u>	<u> </u>	0	·····		ШÖ		2	3 4 5	5	
439.1	20.4		SW						Sand pack	
									20.0'-34.0'	
				SS-9	1				qu=NT	
				21.0-22.5						
				IQN	•					
436.1	23.0	[∇							
			Saturated							
		••••		SS-10	1				qu=NT	
				23.5-25.0	2				Set screen (slot	
				UR	2		1		0.010") 24.0'-34.0'	
		\cdots								
				SS-11	1				qu=NT	
				26.0-27.5	2					
				18"R	2					
		•••••		SS-12	2				au=NT	
		\cdots		28.5-30.0	1				1	
				18"R	2					
		[
				SS-13	1				ou=NT	
				31.0-32.5	2				40-141	
			•	18"R	2					
				}						
105 4	24.0									
423.1	34.U		End of Boring at 34 0'	4						
						ŀ				
]						
				1						
					ł					
				1						
DRILL	NG C	ONT	REN REN	MARKS			WATER	LEVEL (ft.)		
DRILLI	NGN	1ETH	OD 4.25" I.D. HSA Inst	alled 2" diame	ter P	VC	⊽ 23.0			
DRILLI	NG E	QUIP	MENT CME 550 ATV mor	itoring well.			I			
DRILLI	NG S	TART	ED 10/5/10 ENDED 10/5/10				V			
<u></u>										

.

.

PATRICK ENGINEERING INC.

BORING NUMBER CLIENT PROJECT & NO. LOCATION

B-MW-4-Po **Midwest Generation** 21053.070

Powerton

SHEET 1 OF 2

LOGGED BY MPG

GROU	ND E	LEV/	ATION 457.3
ELEVATION	DEPTH (FT)	STRATA	SOIL/ROCK DESCRIPTION
457.3	0.0		Brown silty clay, roots, topsoil
400.0	0.0		Light brown sand, medium to fine brown clay, fine gravel, dry

ELEVATION	DEPTH (FT)	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW COUNTS		Wat 	er Con 3 ed Con ngth (T	tent <u>-</u> - <u>-</u> npressi "SF) + 3	LL 0 50 Ve K 5	NOTES & TEST RESULTS
457.3 456.5	0.0 0.8		Brown silty clay, roots, topsoil FILL Light brown sand, medium to fine brown silty clay, fine gravel, dry FILL	SS-1 1.0-2.5 10"R	6 3 4						
				SS-2 3.5-5.0 8"R	3 4 4						Bentonite seal 3.0'-20.0'. Stickup protective cover installed.
			Brown clayey silt	SS-3 6.0-7.5 18"R	4 6 9						qu=4.0**tsf
				SS-4 8.5-10.0 18"R	455						gu=4.0**tsf
				11.0-12.5 17"R SS-6	3422						qu=3.5**tsf
441.3	16.0		Black clayey silt to silty clay	13.5-15.0 17"R SS-7	2 3						
			loose, dry SP	16.0-17.5 18*R	23						
437.3	20.0			18.5-20.0 18"R	3 5						
DRILL DRILL DRILL DRILL	.ING C .ING N .ING E .ING S		RACTOR Groff Testing IOD 4.25" I.D. HSA PMENT CME 550 ATV ITED 10/16/10 ENDED 10/16/10	IARKS alled 2" diam itoring well.	eter l	PVC	<u>₩</u> 4 ⊊ ⊈ ₹	<u>TER</u> 24.0	LEVE	EL. (ft.)	

				BORING	NUMBER	I	B-MW-4-Po	SHE	ET 2 OF 2
Р		ICK		CLIENT	ļ	Midw	est Generat	ion	
	~117	IUN		PROJEC	CT & NO.	2105	3.070		
				LOCATI	ON	Ρογ	verton		
LOGG	ED B	Y	MPG						
GROU		LEV	ATION 457.3		I	1	l Mot	er Content	
ģ	(FT)				SAMPLE				LL NOTES
VAT	Ŧ	AT/			DEPTH (FT)	NTS	Unconfine	d Compressive	&
ELE	DEF	STR			RECOVERY(IN)	S S S S	Strer	ngth (TSF) 米 3 4	TEST RESULTS
437.3	20.0		Brown coarse to fine gravel, trace co	arse to	1	<u> </u>			Sand pack
			medium sand, loose to medium dens poorly graded	5e,					20.0'-34.0'
		00 00	F-0.1 9	GP	SS-9 21.0-22.5	4			qu=NT
					12 ° R	6			
						1			
		0 0 0 0							
433.3	24.0	603	∑ Solumtod		SS-10 23.5-25.0	6			qu=NT
		$^{\circ}$	Jaluialeu		18"R	7			0.010") 24.0'-34.0'
		602			·				
		ိုလိုင							
		$\mathcal{O}_{\mathcal{O}}$			SS-11 26.0-27.5	2			qu=NT
		00			14"R	3			
		20							
					\$\$-12 28.5-30.0	5			qu=NT
					18"R	10			
		$\frac{1}{2}$							
		503							
		0°0			SS-13 31.0-32.5	4			qu=NT
		°°°,	Coarse to fine gravel, trace silt		10 " R	8			
		sõ c				1			
		$\mathcal{O}_{\mathcal{O}}^{*}$							
423.3	34.0	<u>°</u> 0	End of Poring at 24.0						
			End of Boiling at 34.0						
				-					

DRILLING CONTRACTOR	Groff Testing	REMARKS	WATER LEVEL (ft.)
DRILLING METHOD	4.25" I.D. HSA	Installed 2" diameter PVC	⊈ 24.0
DRILLING EQUIPMENT	CME 550 ATV	monitoring well.	Ā
DRILLING STARTED 10/16	/10 ENDED 10/16/10		▼

			· · · · · · · · · · · · · · · · · · ·	BORING NUMBER			B-MW-5-Po SHEET 1 OF 2					
P	ATR	ICK	ENGINEERING INC.	CLIENT			est Ge	neratio	n			
				PROJEC	CT & NO.	2105	3.070					
					NC	Pov	verton					
LOGG	ED B	Υ	MPG									
GROU	ND E		ATION 455.8		1		<u>.</u>	Motor	Contont	<u> </u>	······	
NO	(FT)				SAMPLE)	LL	NOTES	
AT	TH (ATA	SUIL/RUCK		TYPE & NO.	NTS		20 1 confined i	30 4 Compressi	10 50 L	&	
FE	EP.	TR	DESCRIPTION		RECOVERY(IN)			Strengt	h (TSF)	κ,	TEST RESULTS	
<u>ш</u> 455.8	0.0	\sim	Dark brown silty clay, black coal cind	ers						4 5 		
			topsoil									
				FILL	SS-1	2					qu=NT	
		****			1.0-2.5 12"R	2						
		***				ļ	1				Bentonite seal	
		***	Do:								protective cover	
;			Ulý		SS-2	6					installed.	
					3.5-5.0	8						
		****	·		14"R	10						
			Coarse gravel, red coal cinders							ĺ		
		***	Conveille alou with oppropriated and i	En o							ourst 25thof	
		***	gravel, medium stiff, dry	inie	6.0-7.5	3					Qu≖1.25 191	
		***			16"R	3						
						1						

		****			SS-4	1					qu=1.0**tsf	
		***		·	18"R	2						
						-						

		***			SS-5	2					qu=0.5**tsf	
		***			11.0-12.5	2						
			Trace black coal cinders			ļĭ]	
		***	nace waise said, moist									
		***	Grav clavev silt		SS-6	WOH		1				
					13.5-15.0	2						
					18"R	2						
		***				7						
					F 03							
					55-7 16.0-17.5	WOH 6	1					
438.8	17.0	Ж	Grav coarse to fine gravel, coarse to	fine	18 " R	6						
		$\mathbb{S}^{\mathbb{S}}$	sand, poorly graded, medium dense,	dry		1						
		۲ŏд		GP								
					SS-8	4						
		۲ ر ر	•		18.5-20.0 18"R	7					Sand pack 19.0'-31_0'	
435.8	20.0	ولگ				<u> </u>	1	<u>_</u>		l		
	ING C		RACTOR Groff Testing		IARKS			WATI	<u>ER LEV</u> E	EL (ft.)		
DRILL	ING N	IETH	OD 4.25" I.D. HSA	Insta	alled 2" diam	leter I	PVC	⊽ 20	.5			
	ING E	EQUI	PMENT CME 550 ATV	mon	itoring well.			Ā				
	ING S	STAR	TED 10/5/10 ENDED 10/6/10	JL				¥				

•

•

,

					BORING NUMBER B-MW			5-Po SHEET 2 OF 2			
P		ICK		FERING INC	CLIENT Midwest Ge			neration			
• •	~				PROJE	CT & NO.	2105	3.070			
<u> </u>					ノLOCAT	ION	Pov	verton	L		
LOGG	ED B	Y	MPG								,
GROU	ND E		ATION 4	-55.8			T		Matata Ca		
ğ	(FT)					SAMPLE		PL [<u>-</u> Ll	
AT (Ŧ	AT A		SUIL/RUCK		TYPE & NO.	VTS		0 20	30 40	
Ш Ш	EP	3TR		DESCRIPTION		RECOVERY(IN	SC (Strength	(TSF) *	TEST RESULTS
435.8	20.0	βŽ	- Coarse to	fine gravel, trace coarse t	o fine					1 1	-
430.3	20.5	° C° C°	¥ sand, poo	orly graded, medium dense							
		٥°۲	saturated		GP	SS-9	4				qu≃NT
						21.0-22.5 0"R	6				Set screen (slot 0.010") 21.0'-31.0'
		်ပိုင်					-				
						SS-10	4				qu≏NT
		کرک				23.5-25.0 10"R	6				
							-				
		201									
		Č.	Loose			SS-11	3				qu=NT
		<u>୍</u> ଦ୍ଧମ				26.0-27.5	4				
[603					-				
		00 00									
		°DJ				SS-12	4				ou=NT
		ို့ဂို				28.5-30.0	5				4
		ၟၯၟ				10"R	6				
		ૢૻૢૢૢૢૢૢૢૢૢૢૣૢૺ									
424.8	31.0	<u>°0°</u>		End of Boring at 31.0'							
				and or boring at o no							
		ĺ									
									-		
]				$\neg \frown$		4	L1	<u> </u>		
DRILLI		ONT	RACTOR	Groff Testing	REI	MARKS			WATER	R LEVEL (ft	.)
DRILL	ING N	IETH	OD	4.25" I.D. HSA	Inst	alled 2" diam	eter F	vc	⊻ 20.5		
DRILL	ING E	QUIF	MENT	CME 550 ATV	mo	nitoring well.			Ā		
	RILLING STARTED 10/5/10 ENDED 10/6/10										

.

٠

.

					BORING NUMBER		E	3-MW-6	i-Po	SHEET	1 OF 2	
		ICK	ENGIN		CLIENT	I	Midw	est Gei	neration			
			LINGINI		PROJEC	CT & NO.	2105	3.070				
\subseteq						ON	Pov	verton				
LOGGI	ED B	Y	MPG									
GROU	ND E	LEVA	ATION 46	51.2						1		
NO	Ê					SAMPLE		PL 🖂			NOTES	
ATI	Ц Н	ΤĀ		SOIL/ROCK		TYPE & NO.	TS/	10	20 3	0 40 50	NOTES &	
	EPT	TR		DESCRIPTION		DEPTH (FT) RECOVERY(IN)	55		Strength (T	SF) ¥	TEST RESULTS	
<u><u> </u></u>	ā	w.					<u> a</u> õ		2 :	3 4 5		
461.2	0.0	***	Gravel, cla	iy, coal cinders	FILL							
		***				SS-1	-					
		***				1.0-2.5						
		***						1				

		***									Bentonite seal	
	1	***	•			3.5-5.0					protective cover	
		***									installed.	
	ļ						-					

		***				SS-3	1					
		***				6.0-7.5	Į					
		***					4					

		***				SS-4	-					
		***				8.5-10.0						
451.2	10.0											
	,		Dark gray	clayey silt, organics, ver	ry soft,		1					
		***	moist		FILL]					
		***				S\$-5 11.0-12.5	WOH				qu=0.25**tsf	
		***				17"R	1					
		***					-					
447.2	14.0					SS-6	woн				qu=0.25**tsf ⊸	
			Black coal	cinders, loose, wet		13.5-15.0 16"R	3					
					FILL		ļĭ					
	·											
		***					2					
			57			16.0-17.5	3					
444.2	17.0		¥			14"R	3					
443.2	18.0						1					
			Olive gray	and gray organic silt, tra	ace clay,						Sand pack	
			trace peat	, low plasticity, wet	OL	SS-8 18 5-20 0	2				qu=NT	
						,0.0 20.0	1				Set screen (slot	
					\neg $-$	<u>}</u>			<u> </u>	L	<u> 0.010") 19.0'-29.0'</u>	
DRILL	RILLING CONTRACTOR Groff Testing REMARKS WATER LEVEL (ft.)											
DRILL	PRILLING METHOD 4.25" I.D. HSA Installed 2" diameter PVC ☑ 17.0											
	ING E	QUI	PMENT	CME 550 ATV	moi	nitoring well.			<u>v</u>			
DRILL	ING S	TAR	TED 10/6/1	D ENDED 10/6/1	oll				Y		J	

			······································	BORING NUMBER B-W CLIENT Midwest			B-MW-6-Po SHEET 2 OF 2					
Р/	ATR	ICK	ENGINEERING INC.	CLIENT	T 4 NO	Midw	est Ge	eneratio	ก			
				PROJEC	T & NO.	2105	3.070					
		~	NPC	LOCATI	JN	POV	venton					
GROU												
					· · · · · · · · · · · · · · · · · · ·			Water	Content		1	
	Ē	A	SOIL/ROCK			0] 0 20	0	- <u>A</u> LL 40 50	NOTES	
.A.	H	RAT	DESCRIPTION		DEPTH (FT)	MI	Ur Ur	confined	Compres	sive		
ELE	DEI	STF			RECOVERY(IN	25	ļ ,	Streng 2	th (TSF) 3	* 4 5	IESI RESULIS	
441.2	20.0	1				1			-			
					SS-9 21.0-22.5	WOH					qu≃0.25**tsf	
					16"R	2						
						-						
			Trace fine sand, dark gray mottled b	lack								
			organic sit, trace the sand, wet		SS-10 23.5-25.0	1					qu=0.50**tsf	
					18"R	3						
						-						
					SS-11 26.0-27.5	3					qu=0.75**tsf	
					18"R	3			Í			
433.7	27.5		Dark gray organic clay, trace fine sa	nd,		-						
			medium stiff, moist	<u>A</u>					·			
				QL.	\$\$-12	2					qu=1.25**tsf	
					28.5-30.0 18"R	3						
431.2	30.0		End of Boring at 30.0'			-						
			- • • • • • •									
										-		
										,		
		-										
	ING (ONT	RACTOR Groff Testing		ARKS			WAT		/EL (#)		
DRILL		IETH	OD 4.25" I.D. HSA	Insta	lled 2" diam	eter f	vc	<u> </u>	<u>_, , v</u> 7.0	<u> </u>		
	ING E	QUIF	PMENT CME 550 ATV	mon	itoring well.			Ţ.				
	ING S	TAR	TED 10/6/10 ENDED 10/6/10					Y			J	
											/	

.

PATRICK ENGINEERING INC.

BORING NUMBER B-MW-7-Po CLIENT Midwest Generation PROJECT & NO. 21053.070 LOCATION Powerton

SHEET 1 OF 3

LOGGED BY MPG GROUND ELEVATION

GROU	IND E	LEV	ATION	459.6
LEVATION	ЕРТН (FT)	TRATA		SOIL/ROCK DESCRIPTION

/ATION	гн (FT)	ATA	SOIL/ROCK		SAMPLE TYPE & NO.	/TS	PL	Wa 0 2			LL 10 50	NOTES &
ELEV	DEP	STR/	DESCRIPTION		RECOVERY(IN)	SOUN COUNT COUNC COUNT C		Stre	ea Cor ingth (1 ?	npressi [SF) 3	ve ₭ ₄ ₅	TEST RESULTS
459.6	0.0		Sand, gravel, black cinders, dry	FILL								······································
-		***	-		SS-1 1.0-2.5							

												Bentonite seal
					SS-2 3.5-5.0							protective cover
		***										motalieu.
						•						
					6.0-7.5							

					SS-4				÷		·	
449.6	10.0				8.5-10.0							
			Sand, gravel, clay, black coal cinders	FILL								
		***			\$\$-5 11.0-12.5	5 3						
		***			6"R	3						
446.1	13.5		Dark gray organic along soft moist									
			Dark gray organic day, son, moist	он	13.5-15.0 10"R	22						qu≖u.5**ist
					SS-7	2						qu=0.5**tsf
			Moist		16.0-17.5 18"R	1 2						
			Trace fine sand, organic silt, moist									
					SS-8 18.5-20.0	WОН 2						qu=0.75**tsf
439.6	20.0				18"R	2						
DRILL	ING C	ONT	RACTOR Groff Testing	REMARKS WATER LEVEL (ft.)								
	ing M Ing F	ieth Quif	OD 4.25" I.D. HSA MENT CME 550 ATV	Installed 2" diameter PVC monitoring well. ♀ 36.0 ♥								
DRILL	ING S	TAR	ED 10/4/10 ENDED 10/5/10		¥ ¥							

PATRICK ENGINEERING INC. BORING NUMBER B-MW-7-Po SI CLIENT Midwest Generation PROJECT & NO. 21053.070 LOCATION Powerton

-7-Po SHEET 2 OF 3 eneration .

LOGGED BY MPG

GROU	ND E	LEVA	TION 459.6							
Z	Ē				SAMPLE		PL c	Water C	ontent	
Ĩ	E T	≤	SOIL/ROCK		TYPE & NO.	ုပ	10		30 40	
2	Ē	`≸	DESCRIPTION		DEPTH (FT)	₹Υ	Un	confined C	ompressive	
E	Ш	STI			RECOVERY(IN)	SOC	1	Strength 2	3 4	5
439.6	20.0		Dark gray organic clay, mottled black,					<u> </u>		
			medium stiff, dry							
				ОН	SS-9	3				qu=1.0**lsf
					21.0-22.5	2				
					10 K	4				
					SS-10	2				qu≃1.25**tsf
					18"R	4				
ĺ					-					
433.6	26.0		Gray organic silt trace shells fibers very		SS-11	2				m=0.25**tef
	-		soft, moist		26.0-27.5	2				qu-0.20 isi
				OL	18"R	2				
	ł									
		==1	Dry		SS-12	2				qu=1.75**tsf
	}				28.5-30.0	3				
						3				
	ł									
428.6	31.0		Ded and the state of the state		00.40					
			Dark gray organic clay, trace fine gravel, moist		31.0-32.5	2				qu=1.25**tst
				ОН	18"R	3				Sand pack
										32.0'-45.0'
426 1	33 5									
420,1	00.0		Gray clayey gravel, coarse sand, clay, silt,		SS-14	wон				qu≂NT
1			moist	~~	33.5-35.0	2				
				GC	18"R	2				
		ZC.								Set screen (slot
423.6	36.0		Ϋ́							0.010") 35.0'-45.0'
		12	Medium dense, saturated		SS-15	2				qu≖NT
					18"R	6				
		11								
	ļ	1. A.			SS-16	2				
	į	L.			38.5-40.0	4				
419.6	40.0	59			10"R	7		:		
						·		1		·
DRILL	ING C	ONTE	RACTOR Groff Testing	REM	IARKS			WATE	R LEVEL (ft	.)
DRILL	ING M	IETHO	DD 4.25" I.D. HSA	Insta	alled 2" diame	eter F	VC	⊈ 36.0)	
DRILL	ING E	QUIP	MENT CME 550 ATV	mon	itoring well.			X		
	RILLING STARTED 10/4/10 ENDED 10/5/10									

PATRICK ENGINEERING INC.

CLIENT PROJECT & NO. LOCATION

BORING NUMBER

B-MW-7-Po SHEET 3 OF 3 Midwest Generation 21053.070

Powerton

LOGGED BY MPG

GROU	ND E	LEVA	ATION 459.6										
N	Ē						PL -	Wat	er Con	tent	ti		
Ĕ	E)	<	SOIL/ROCK		TYPE & NO.	Ś	10	2	,	0 40	50	N	OTES
N N	Ę	₹	DESCRIPTION		DEPTH (FT)	≥₹	Un	confine	ed Con	pressiv	e	TEOT	&
ELE.	ជ្រ	LE I			RECOVERY(IN)	20	1	Stre	ngth (T	'SF)¥ ³₄	5	IESI	RESULTS
419.6	40.0	٥Öd	Coarse to fine gravel, coarse sand, poorly					Ī					
		۶Q٩	graded, medium dense, saturated										
		ဂီဂီ	G	P	SS-17	6						au≂NT	
		[0]			41.0-42.5	10						•	
		ီဂီ			18"R	10							
		60.											
		201											
		$\frac{1}{2}$			SS-18	8						qu=NT	
		20	· ·		43.5-45.0	10							
414.6	45.0	5 N N				14		1					
			End of Boring at 45.0'										
ľ													
								Í					
	i			1									
				:									
J				Î									
		Í											
								·					
				1									
1													
1													
				:									
ļ													
								ļ					
	ING (RACIOR Gron lesting	REM	AKKS			<u>WA</u>	IER	LEVE	<u>_ (tt.)</u>		
DRILL	ING	/ETH	OD 4.25" I.D. HSA	Insta	liled 2" diame	eter P	VC	Į⊈ ∶	36.0				
DRILL	ING E	QUIF	PMENT CME 550 ATV		noring weit.			Ā					
DRILLING STARTED 10/4/10 ENDED 10/5/10													

(BORING NUMBER B-				B-MW-8-Po SHEET 1 OF 2					
D		ICK	ENGINEERING INC	CLIENT	F	Vidw	est Ger	neration	l				
				PROJEC	CT & NO.	2105	3.070						
				LOCATI	ON	Pov	erton/						
LOGG	ED B'	۲ • •	MPG										
GROU			ATION 468.7	<u> </u>]		[Water (Content				
٩ ٥	(FT	_	SOURCER)		NOTES		
VAT	HT	AT/	DESCRIPTION		DEPTH (FT)	≥ĭ	Unc	confined (compressi	ve			
	DEF	STR	DEOONA HON		RECOVERY(IN)	S S S S S S S S S S S S S S S S S S S	1	Strengti 2	1(TSF)) 3, ·	₭ 4 5	IESI KESULIS		
468.7	0.0	***	Fine gravel, sand, silt, clay, black cir	iders,							· · · · ·		
		****	dry	FILL									
					SS-1 1.0-2.5					1			
						1							
											Bentonite seal		
					SS-2 3.5-5.0						protective cover		
		***									installed.		
						1							
		\otimes											
					SS-3 6 0-7.5								
	:												
					·	1							
					SS-4 85-10.0								
					0.0-10.0								
458.7	10.0		Black cinders		-	1							
				FILL		<u> </u> .							
					SS-5	15							
					14"R	15/3			ł				
						-							
					SS-6	11							
		***			13.5-15.0 18"R	12							
						-							
			Silty clay seam 15.5'-16.5'										
					SS-7	15							
					16.0-17.5 17"R	15							
		***				-				1			
										1	Sand pack		
					SS-8	7					18.0'-30.0'		
449.2	19.5		Ž		18.5-20.0 18"R	11				1			
											<u> </u>		
	ING (RACTOR Groff Testina		MARKS			WAT	ERLEVI	EL (ft.)			
DRILI	.ING I	METH	10D 4.25" I.D. HSA	Installed 2" diameter PVC			PVC	/C					
DRILI	ING E	EQUI	PMENT CME 550 ATV	monitoring well.									
	ING S	STAR	RTED 9/30/10 ENDED 9/30/10					X					

.

.

				BORING NUMBER B-			B-MW-8-Po SHEET 2 OF 2					
l P/	ATR	ICK	ENGINEERING INC.	CLIEN		Midw	est Ge	eneration	-			
				PROJ	ECT & NO.	2105	3.070					
	בה פי	~	NDC		HON	Pov	verton	l				
GROU		' LEV/	ATION 468.7									
z	<u> </u>			•		1		Water Co	ontent			
UI0	H (F	۲	SOIL/ROCK		TYPE & NO.	S		<u></u> -O-	∆ ^L 30 40	50 NOTES		
	ΡT	RA ⁻	DESCRIPTION		DEPTH (FT)	βS	Ur	nconfined Co Strength	mpressive (TSF) ¥			
ш	B	ST			RECOVERY(IN)	ЩQ ДQ	1	2	3 4	5		
448.7	20.0	***	Black cinders	FILL						Set screen (slot 0.010") 20.0'-30.0'		
447.7	21.0	***	⊈ Saturated		<u>SS-9</u>	5						
		***			21.0-22.5	5						
	·			-								

		***			SS-10	1						
444.2	24.5				23.5-25.0 18"R	1						
			Dark gray organic clay, soft, mois	t OH								
										qu=0.75"tsi		
					SS-11	1				qu=1.0**tsf		
					26.0-27.5 18"R	2						
441.2	27.5		Dark grav organic silt, medium st	ff to soft		-						
			low plasticity, moist	a to sort,		ł						
				OL	SS-12	2				qu=1.25**tsf		
					28.5-30.0 18"R	4						
438.7	30.0		End of Boring at 30.0	•				Í				
										· ·		
	1											
						1						
						1						
			<u> </u>		 	<u> </u>		<u>↓</u> }				
DRILL	ING C	ONT	RACTOR Groff Testing	R	EMARKS			WATE	R LEVEL (f	<u>t.)</u>		
	ING N	/ETH	10D 4.25" I.D. HSA		stalled 2" diam onitoring well	eter l	PVC		l			
	ILLING EQUIPMENT CME 550 ATV											
	ING 5	AR	CIED 9/30/10 ENDED 9/30/1					¥	<u>.</u>			

٠

.

					BORING NUMBER B-MW-				V-9-Po SHEET 1 OF 2					
P	ΔTR	СК	FNGI			IENT		Midw	est G	enera	tion			
					PF	ROJEC	CT & NO.	2105	3.070					
					JLC	CATI	ON	Pov	verto	n				
LOGG	ED B	Y	MPG											
GROU	IND E	LEVA	TION	466.2										
N	F						SAMPLE		PL	Wa	ter Cor	itent		
AT	Э́н	₹		SOIL/ROCK			TYPE & NO.	2	·	10 2		<u>-</u>	io 50	NOTES
- <u>N</u>	μ	ΥΥ Σ		DESCRIPTION			DEPTH (FT)	<u>≷</u> S	U	nconfin	ed Cor	npressi	ve	
<u> </u>	ä	ST					RECOVERY(IN	기품영	ļ	1 :	2 2	3	4 5	
466.2	0.0	***	Black ci	nders, fine gravel, crushed	rock, c	lry Thu								
		***			F			-						
		***					1.0-2.5							

							<u> </u>	-						
		***												Bentonite seat
							SS-2		ļ					3.0'-20.0'. Stickup
							3.5-5.0		-					installed.
								-						
		***												:
							SS-3	1						
							6.0-7.5							
	ê	***												
		***					SS-4	4						
	ß	***					8.5-10.0							
456.2	10.0	***												
	000	***	Black cir	nders, coarse to fine sand,	brick, f	ine								
	Ŕ		giavei, u	"y	F	TILL	00.5							
	Į.						SS-5 11.0-12.5	6 12						qu=NT
	E E					i	14"R	15						
								1						
	Ŕ													
							SS-6	5						qu=NT
	K						13.5415.0 18"R	7						
													ĩ	
	KA A						\$\$-7	6						qu=NT
449.2	17.0¢	<u> </u>	Moist				16.0-17.5	9						
			Brown cl	ayey silt, trace fine sand, n	noist	0	7 01							
447.0	10.0						55-8	3						ou-MT
447.Z	19.05		Light bro	wn fine to medium sand, k	ose, w	ell	18.5-20.0	6						40-1N I
	-		graded		,		18"R	11						
DRILL	ING C		RACTOR	Groff Testing		REM	ARKS			<u>WA</u>	TER	LEVE	<u>L (ft.)</u>	
DRILL	ING M	ETH(סכ	4.25" I.D. HSA		Insta	Iled 2" diam	eter P	VC	Į₽ i	23.5			
		QUIP		GME 550 ATV			toring well.			Ť X	21.6			
URILL	ING S	IART	ED 9/28/1	U ENDED 9/28/10	\mathcal{L}	\square				<u> </u>				

•

•

PATRICK ENGINEERING INC.

CLIENT PROJECT & NO. LOCATION

BORING NUMBER

B-MW-9-Po Midwest Generation 21053.070

Powerton

SHEET 2 OF 2

LOGGED BY MPG

٠

GROU	ND E	LEV	ATION 466.2								
Z	Ê			SANDLE		DI -	Wa	iter Cor	itent	11	
Ĕ	ц.	×	SOIL/ROCK		ം	F L 10	;	0-		50	NOTES
A	H H	AT	DESCRIPTION	DEPTH (FT)	≥ž		confin	i ed Cor	noressiv		&
L LL	ц Ц	L R	DESCRIPTION	RECOVERY	62		Stre	ength (1	гśF) Ж	ĕ	TEST RESULTS
Ш		ы С			ΞŪ	1		2	3 4	5	
446.2	20.0		SW								Sand pack
											20.0'-32.0'
444.6	21.6		7	\$\$-9	3 ·						
	21.0		+	21.0-22.5	3						
					4						Set screen (slot
											0.010") 22.0'-32.0'
442.7	23.5		∑.						1		
			Saturated	SS-10	1						
		•		23.5-25.0	3			ļ			
				18"R	8						
				SS-11	0						
				26.0-27.5	2						
				18"R	2			1			
				\$5.12	2						,
			Nedium dense	28.5-30.0	6			ļ			
			medium dense	18"R	13						
			· ·								
			Trace tine gravel	SS-13	2						
			·	31.0-32.5 18"R	5						
433.7	32.5							i			
			End of Boring at 32.5'								
	•	ł									
					1						
		1								ļ	
	1			<u> </u>				L	L		
DRILL	INCO		RACTOR Groff Testing	MARKS			NAL A	TEP		/f4 \	J
							<u></u>			<u>- (it.)</u>	***
URILL	ING M		00 4.25" I.D. HSA inst	alled 2" diame	eter P	VC	ĮΫ	23.5			
DRILL	ING E	QUIF	PMENT CME 550 ATV	moring well.			Ā	21.6			and the second se
DRILL	RILLING STARTED 9/28/10 ENDED 9/28/10										

				BORING NUMBER B-M CLIENT Midwest				W-10-Po SHEET 1 OF 2						
P.	ATR	ICK	ENGINEERING INC.			Midw	rest Ge	eneration						
			J			2105 Dev	3.070							
LOGG	ED B	Y	MPG	LOOAN		FΨ	AGITOU							
GROL	JND E	LEVA	ATION 454.1											
Z	Ē				CAMPLE	Γ		Water Cor	ntent					
ATIC	н Ш	₹	SOIL/ROCK		TYPE & NO.	2			—— <u>~</u> ∧ ⊂⊂ 30 40 50	NOTES				
L L	L L	R	DESCRIPTION		DEPTH (FT)	§§	Un	confined Cor Strength (npressive TSF) X	TEST RESULTS				
454 1		0	Black and brown eithy elev tenneit			<u>щറ</u>	1	2	3 4 5					
	0.0		Diack and brown sing day topson	CL										
					SS-1	1								
					1.0-2.5	ĺ								
						-								
										Bentonite seat				
					SS-2					3.0'-17.0'. Stickup				
					0.0-0.0					installed.				
					SS-3 6.0-7.5									
	•				A 22									
					8.5-10.0									
444.1	10.0						Í							
	ļ		Brown organic silt, some clay, trace pe soft, moist	at,										
	Ē			OL	SS-5	1				gu≖0.5**tsf				
	-				11.0-12.5	2								
						~								
440.6	13.5													
			Black organic clay, medium plasticity,		SS-6	2				qu=1.5**tsf				
	-		meaium stiff, ary	OL	13.5-15.0 18"R	3 4								
	-													
438.1	16.0													
			Brown and gray silty clay, trace to little coarse to fine sand, medium stiff, dry		SS-7 16 0-17 5	4				qu=2.0**tsf				
				CL	18"R	4				Sand pack				
					·					17.0'-29.0'				
					55-8 18.5-20.0					Set screen /clot				
										0.010") 19.0'-29.0'				
									· · · · · · · · · · · · · · · · · · ·					
טאונג חפורו	ING M	ОИ Н ЕТЫ/			AKKS		WC .	WATER	LEVEL (ft.)					
DRILL	ING E		MENT CME 550 ATV	moni	itoring well.	ier P	VC	¥ 21.0' ¥						
	ING S	TART	ED 10/4/10 ENDED 10/4/10		-			× ×						
<u> </u>				·				<u> ÷</u>						

.

.

•

.

					BORING NUMBER		R B-MW-10-Po				SHEE	ΞT	2 OF 2	
P	ΔTR	ICK		FERING INC	CL	IENT		Midw	est Ge	neratio	on			
	~~				PR	OJEC	T & NO.	2105	3.070					
<u> </u>				·		CATIO	NC	Pov	verton					
LOGG	ED B	Y	MPG											
GROU	ND E	LEV	ATION 4	454.1			:							
N	Ē						SAMPLE		PL r	Water	r Conte	int	L	
ATIC	E E	IA		SOIL/ROCK			TYPE & NO.	S		20	30	40	50	NOTES
EV.	ЪТ	RA		DESCRIPTION			DEPTH (FT)] ŠŠ	Un	confined Strend	l Comp hth (TS	ressive F) ¥	1	EST RESULTS
E	B	ST					RECOVERY(IN	기금앙	1	2	3	.1	5	
434.1	20.0													
433.1	21.0		1											
			Gray coa	arse to tine sand, trace fine tv oraded, loose, saturated	i gravel, I	•	SS-9 21.0-22.5	2					 	ţu≕NT
			, p,	., 3		SP	18"R	1		ł				
								-						
			r								ļ			
							SS-10	2			{		6	au=NT
429.6	24.5						23.5-25.0	4						
			Brown a	nd gray coarse to fine grav	el, poor	1y	10"R	3						
			graded, I	loose, saturated		GP								
		00	4			01		_						
			1				SS-11 26 0-27 5	2						lu=NT
							10"R	7						
								-						
		, Õ Č												
		b Cr					SS-12	5						u≖NT
		, o c					28.5-30.0	7						• • • • •
424.1	30.0	۶Q°					14"R	8						
				End of Boring at 30.0'				1						
							i							
		•												
1														
							ľ							
	1								[
													1	
							•	1						
	ĺ													
							-]	
			·		~			L	• •	1				
DRILL	ING (CONT	FRACTOR	Groff Testing		REM	IARKS			<u> WA1</u>	<u>ER L</u>	EVEL (<u>ft.)</u>	
DRILL	ING N	/ETŀ	IOD	4.25" I.D. HSA		insta	lled 2" diam	neter l	PVC	⊉ 2	1.0'			
DRILL	ING E	QUI	PMENT	CME 550 ATV		mon	itoring well.			Σ.				
DRILL	ING S	TAR	TED 10/4/1	10 ENDED 10/4/10						Ţ				

•

.

2231 W. Altorfer Drive - Peoria, IL 61615 (309) 692-9688 - (800) 752-6651 - FAX (309) 692-9689

Laboratory Results

Midwest Generation - Powerton Facility 13082 E Manito Rd

Pekin, IL 61554-8587 Attn : Joe Heredia Date Received : 12/15/10 16:45 Report Date 01/04/11 Customer # : 233203 P.O. Number : 21053.070

.

Facility :

Sample No: 10122781-1	Collect Date 12/15/10 14:15					
Client ID : POWERTON	Site : MW-1		Locator : GRAB			
Parameter	Qualifier	Result	Analysis Date	Analyst	Lab	
EPA 300.0 R2.1					PIA	
Chloride, Dissolved Fluoride, Dissolved Nitrate as N, Diss. Sulfate, Dissolved		46 mg/ł 0.28 mg/ł 7.2 mg/l 50 mg/l	12/16/10 15:03 12/16/10 14:45 12/16/10 15:03 12/16/10 15:03	lgjfa lgjfa lgjfa lgjfa		
SM (18) 2540C					PIA	
Solids, Total Dissolved, Filtered SM 4500 CN C/SW9012A		490 mg/l	12/16/10 08:37	GDM	PIA	
Cyanide, Dissolved	. Р<	0.005 mg/l	12/20/10 15:58	lgtth		
SW-846 6010B R2.0					PIA	
Iron, Dissolved	· <	10 ug/l	01/03/11 12:09	BAB		
SW-846 6020					PIA	
Antimony, Dissolved	<	3 ug/l	12/21/10 14:56	JMW		
Arsenic, Dissolved	< د	1 ug/l	12/21/10 1 4 :56	JMW		
Barium, Dissolved	·	44 ug/l	12/21/10 14:56	JMW		
Beryllium, Dissolved	<	1 ug/l	12/21/10 14:56	JMW		
Boron, Dissolved		450 ug/l	12/21/10 14:56	JMW		
Cadmium, Dissolved	<	1 ug/l	12/21/10 14:56	JMW		
Chromium, Dissolved	<	4 ug/l	12/21/10 14:56	JMW		
Cobalt, Dissolved	<	2 ug/l	12/21/10 14:56	JMW		
Copper, Dissolved	<	3 ug/i	12/21/10 14:56	JMW		
Lead, Dissolved	<	1 ug/l	12/21/10 14:56	JMW		
Manganese, Dissolved	<	1 ug/i	12/21/10 14:56	JMW		
Mercury, Dissolved	<	0.2 ug/l	12/21/10 14:56	JMW		
Nickel, Dissolved		10 ug/l	12/21/10 14:56	JMW		
Selenium, Dissolved		1.6 ug/l	12/21/10 14:56	JMW		
Silver, Dissolved	<	5 ug/l	12/21/10 14:56	JMW		
Thallium, Dissolved	<	1 ug/l	12/21/10 1 4 :56	JMW		
Zinc, Dissolved	<	6 ug/l	12/29/10 09:12	JMW		

2231 W. Altorfer Drive - Peoria, IL 61615 (309) 692-9688 - (800) 752-6651 - FAX (309) 692-9689

STREE CORO

Laboratory Results

Midwest Generation - Powerton Facility 13082 E Manito Rd

Pekin, IL 61554-8587 Attn : Joe Heredia

Sample No: 10122781-2		(Collect Date 12/15/10 1	10:45	
Client ID: POWERTON	Site: MW-2		Locator: GRAB		
Parameter	Qualifier	Result	Analysis Date	Analyst	Lab
EPA 300.0 R2.1					PIA
Chloride, Dissolved Fluoride, Dissolved Nitrate as N, Diss. Sulfate, Dissolved	<	45 mg/l 0.25 mg/l 7.5 mg/l 52 mg/l	12/16/10 15:56 12/16/10 15:38 12/16/10 15:56 12/16/10 15:56	lgjfa lgjfa lgjfa lgjfa	
SM (18) 2540C					PIA
Solids, Total Dissolved, Filtered SM 4500 CN C/SW9012A		480 mg/l	12/16/10 08:37	GDM	PIA
Cvanide Dissolved	Pr	0.005 mo/	12/20/10 16:00	latth	
	FS	0.000 mg/	12/20/10 10:00	igun	PIA
SW-648 6010B R2.0					
Iron, Dissolved	<	10 ug/l	01/03/11 12:11	BAB	014
SW-846 6020					PIA
Antimony, Dissolved	<	3 ug/l	12/21/10 15:18	JMW	
Arsenic, Dissolved		1.8 ug/i	12/21/10 15:18	JMW	
Barium, Dissolved		42 ug/l	12/21/10 15:18	JMW	
Beryllium, Dissolved	<	1 ug/l	12/21/10 15:18	JMW	
Boron, Dissolved		380 ug/i	12/21/10 15:18	JMW	
Cadmium, Dissolved	<	1 ug/l	12/21/10 15:18	JMW	
Chromium, Dissolved	<	4 ug/l	12/21/10 15:18	JMW	
Cobalt, Dissolved	<	2 ug/l	12/21/10 15:18	JMW	
Copper, Dissolved	<	3 ug/l	12/21/10 15:18	JMW	
Lead, Dissolved	<	1 ug/l	12/21/10 15:18	JMW	
Manganese, Dissolved	<	1 ug/l	12/21/10 15:18	JMW	
Mercury, Dissolved	<	0.2 ug/l	12/21/10 15:18	JMW	
Nickel, Dissolved		8.6 ug/l	12/21/10 15:18	JMW	
Selenium, Dissolved		1.7 ug/l	12/21/10 15:18	JMW	
Silver, Dissolved	<	5 ug/l	12/21/10 15:18	JMW	
Thallium, Dissolved	<	1 ug/i	12/21/10 15:18	JMW	
Zinc, Dissolved	<	6 ug/l	12/29/10 09:15	JMW	

2231 W. Altorfer Drive - Peoria, IL 61615 (309) 692-9688 - (800) 752-6651 - FAX (309) 692-9689

Laboratory Results

Midwest Generation - Powerton Facility 13082 E Manito Rd

Pekin, IL 61554-8587 Attn : Joe Heredia Date Received : 12/15/10 16:45 Report Date 01/04/11 Customer # : 233203 P.O. Number : 21053.070 Facility :

Sample No: 10122781-3			Collect Date 12/15/10 1	2:45	
Client ID: POWERTON	Site: MW-3		Locator : GRAB		
Parameter	Qualifier	Result	Analysis Date	Analyst	Lab
EPA 300.0 R2.1					PIA
Chloride, Dissolved		39 mg/l	12/16/10 17:24	lgjfa	
Fluoride, Dissolved		0.3 mg/l	12/16/10 17:06	lgjfa	
Nitrate as N, Diss.		9.4 mg/l	12/16/10 17:24	lgjfa	
Sulfate, Dissolved		64 mg/l	12/16/10 17:24	lgjfa	
SM (18) 2540C					PIA
Solids, Total Dissolved, Filtered		480 mg/l	12/16/10 08:37	GDM	
SM 4500 CN C/SW9012A					PIA
Cyanide, Dissolved	P<	0.005 mg/l	12/20/10 16:01	lgtth	
SW-846 6010B R2.0					PIA
Iron, Dissolved	<	10 ug/l	01/03/11 12:14	BAB	
SW-846 6020					PIA
Antimony, Dissolved	<	3 ug/i	12/21/10 15:24	JMW	
Arsenic, Dissolved		1.7 ug/l	12/21/10 15:24	JMW	
Barium, Dissolved		38 ug/l	12/21/10 15:24	JMW	
Beryllium, Dissolved	<	1 ug/l	12/21/10 15:24	JMW	
Baran, Dissolved		750 ug/l	12/21/10 15:24	JMW	
Cadmium, Dissolved	<	1 ug/l	12/21/10 15:24	JMW	
Chromium, Dissolved	<	4 ug/l	12/21/10 15:24	JMW	
Cobalt, Dissolved	<	2 ug/l	12/21/10 15:24	JMW	
Copper, Dissolved	<	3 ug/l	12/21/10 15:24	JMW	
Lead, Dissolved	<	1 ug/l	12/21/10 15:24	JMW	
Manganese, Dissolved		4.7 ug/i	12/21/10 15:24	JMW	
Mercury, Dissolved	<	0.2 ug/l	12/21/10 15:24	JMW	
Nickel, Dissolved		11 ug/l	12/21/10 15:24	JMW	
Selenium, Dissolved	<	1 ug/l	12/21/10 15:24	JMW	
Silver, Dissolved	<	5 ug/l	12/21/10 15:24	JMW	
Thallium, Dissolved	<	1 ug/l	12/21/10 15:24	JMW	
Zinc, Dissolved	<	6 ug/l	12/29/10 09:17	JMW	

.

2231 W. Altorfer Drive - Peoria, IL 61615 (309) 692-9688 - (800) 752-6651 - FAX (309) 692-9689

Laboratory Results

Midwest Generation - Powerton Facility 13082 E Manito Rd

Pekin, IL 61554-8587 Attn : Joe Heredia

Sample No: 10122781-4		(Collect Date 12/15/10	12:05	
Client ID: POWERTON	Site : MW-4		Locator: GRAB		
Parameter	Qualifier	Result	Analysis Date	Analyst	Lab
EPA 300.0 R2.1					PIA
Chloride, Dissolved Fluoride, Dissolved Nitrate as N, Diss. Sulfate, Dissolved		150 mg/l 0.3 mg/l 0.34 mg/l 110 mg/l	12/16/10 18:34 12/16/10 17:59 12/16/10 17:59 12/16/10 17:59 12/16/10 18:34	lgjfa lgjfa lgjfa lgjfa	
SM (18) 2540C					PIA
Solids, Total Dissolved, Filtered SM 4500 CN C/SW9012A		680 mg/l	12/16/10 08:38	GDM	PIA
Cyanide, Dissolved	P<	0.005 mg/l	12/20/10 16:02	lgtth	
SW-846 6010B R2.0		_		·	PIA
Iron, Dissolved	<	10 ug/l	01/03/11 12:17	BAB	
SW-846 6020		-			PIA
Antimony, Dissolved	<	3 ug/l	12/21/10 15:29	WML	
Arsenic, Dissolved	<pre> <</pre>	1 ug/l	12/21/10 15:29	WML	
Banum, Dissolved Boodlium, Dissolved		55 Ug/i	12/21/10 15:29	JMW	
Boron Dissolved		770 ug/i	12/21/10 15:29		
Cadmium Dissolved		1 µa/i	12/21/10 15:29		
Chromium Dissolved		4.5ug/i	12/21/10 15:29	JIVIVV IMA\A/	
Cobalt, Dissolved	<	2 ug/l	12/21/10 15:29	.IM\A/	
Copper, Dissolved	<	3 ug/l	12/21/10 15:29	.IMW	
Lead. Dissolved	<	1 ua/l	12/21/10 15:29	JMW	
Manganese, Dissolved		· 770 ug/l	12/21/10 15:29	JMW	
Mercury, Dissolved	<	0.2 ug/l	12/21/10 15:29	JMW	
Nickel, Dissolved		12 ug/i	12/21/10 15:29	JMW	
Selenium, Dissolved		2.2 ug/l	12/21/10 15:29	JMW	
Silver, Dissolved	<	5 ug/l	12/21/10 15:29	JMW	
Thallium, Dissolved	<	1 ug/l	12/21/10 15:29	JMW	
Zinc, Dissolved	<	6 ug/l	12/29/10 09:33	JMW	

PDC Laboratories, Inc.

2231 W. Altorfer Drive - Peoria, IL 61615 (309) 692-9688 - (800) 752-6651 - FAX (309) 692-9689

٦

Laboratory Results

Midwest Generation - Powerton Facility 13082 E Manito Rd .

Date Received : 12/15/10 16:45 Report Date 01/04/11 Customer # : 233203 P.O. Number : 21053.070 Facility :

Pekin, IL 61554-8587 Attn : Joe Heredia

Sample No: 10122781-5		(Collect Date 12/15/10 1	1:25	
Client ID : POWERTON	Site : MW-5		Locator: GRAB		·
Parameter	Qualifier	Result	Analysis Date	Analyst	Lab
EPA 300.0 R2.1					PIA
Chloride, Dissolved Fluoride, Dissolved Nitrate as N, Diss. Sulfate, Dissolved	<	150 mg/i 0.27 mg/i 0.02 mg/i 160 mg/i	12/16/10 19:27 12/16/10 18:52 12/16/10 18:52 12/16/10 18:27	lgjfa lgjfa lgjfa lgjfa	
SM (18) 2540C					PIA
Solids, Total Dissolved, Filtered		740 mg/l	12/16/10 08:38	GDM	PIA
Cyanide Dissolved	Pc	0.005 mg/l	12/20/10 16:03	latth	
SW-846 6010B R2.0		0.000 mgn	-	iguit	PIA
Iron, Dissolved		130 ug/l	01/03/11 12:19	BAB	
SW-846 6020		Ū			PIA
Antimony, Dissolved Arsenic, Dissolved Barium, Dissolved Beryllium, Dissolved	<	3 ug/l 1.1 ug/l 53 ug/l 1 ug/l	12/21/10 15:35 12/21/10 15:35 12/21/10 15:35 12/21/10 15:35 12/21/10 15:35	WML WML WML WML	
Boron, Dissolved		950 ug/l	12/21/10 15:35	JMW	
Cadmium, Dissolved Chromium, Dissolved Cobalt, Dissolved	<	1 ug/l 4,4 ug/l 2.5 ug/l	12/21/10 15:35 12/21/10 15:35 12/21/10 15:35	WML JMW WML	
Copper, Dissolved	<	3 ug/l	12/21/10 15:35	JMW	
Lead, Dissolved Manganese, Dissolved Mercury, Dissolved Nickel, Dissolved	<	1 ug/i 510 ug/i 0.2 ug/i 14 ug/i	12/21/10 15:35 12/21/10 15:35 12/21/10 15:35 12/21/10 15:35	WML WML WML	·
Selenium, Dissolved		1.9 ug/l	12/21/10 15:35	JMW	
Silver, Dissolved Thallium, Dissolved Zinc, Dissolved	< < <	5 ug/l 1 ug/l 6 ug/l	12/21/10 15:35 12/21/10 15:35 12/29/10 09:36	JMW JMW JMW	

.

2231 W. Altorfer Drive - Peoria, IL 61615 (309) 692-9688 - (800) 752-6651 - FAX (309) 692-9689

Laboratory Results

Midwest Generation - Powerton Facility 13082 E Manito Rd

Pekin, IL 61554-8587 Attn : Joe Heredia

Sample No: 10122781-6		(Collect Date 12/15/10 1	10:00	
Client ID : POWERTON	Site : MW-10		Locator: GRAB		
Parameter	Qualifier	Result	Analysis Date	Analyst	Lab
EPA 300.0 R2.1			`		PIA
Chloride, Dissolved		40 mg/l	12/16/10 20:38	lgifa	
Fluoride, Dissolved	<	0.25 mg/l	12/16/10 19:45	lgjfa	
Nitrate as N, Diss.		3 mg/l	12/16/10 20:38	lgjfa	
Sulfate, Dissolved		62 mg/l	12/16/10 20:38	lgjfa	
SM (18) 2540C					PIA
Solids, Total Dissolved, Filtered		530 mg/l	12/16/10 08:38	GDM	
SM 4500 CN C/SW9012A					PIA
Cyanide, Dissolved	P<	0.005 mg/l	12/20/10 16:04	lgtth	
SW-846 6010B R2.0				-	PIA
Iron, Dissolved	<	10 ug/l	01/03/11 12:22	BAB	
SW-846 6020					PIA
Antimony, Dissolved	<	3 ug/i	12/21/10 15:40	JMW	
Arsenic, Dissolved	<	1 ug/i	12/21/10 15:40	JMW	
Barium, Dissolved		240 ug/i	12/21/10 15:40	JMW	
Beryllium, Dissolved	<	1 ug/i	12/21/10 15:40	JMW	
Boron, Dissolved		480 ug/l	12/21/10 15:40	JMW	
Cadmium, Dissolved	<	1 ug/i	12/21/10 15:40	JMW	
Chromium, Dissolved	<	4 ug/l	12/21/10 15:40	JMW	
Cobalt, Dissolved		2.6 ug/l	12/21/10 15:40	JMW	
Copper, Dissolved	<	3 ug/l	12/21/10 15:40	JMW	
Lead, Dissolved	<	1 ug/i	12/21/10 15:40	JMW	
Manganese, Dissolved		2100 ug/i	12/21/10 15:40	JMW	
Mercury, Dissolved	<	0.2 ug/l	12/21/10 15:40	JMW	
Nickel, Dissolved		15 ug/l	12/21/10 15:40	JMW	
Selenium, Dissolved		4.2 ug/l	12/21/10 15:40	JMW	
Silver, Dissolved	<	5 ug/l	12/21/10 15:40	JMW	
Thallium, Dissolved	<	1 ug/l	12/21/10 15:40	JMW	
Zinc, Dissolved	<	6 ug/l	12/29/10 09:38	JMW	

2231 W. Altorfer Drive - Peoria, IL 61615 (309) 692-9688 - (800) 752-6651 - FAX (309) 692-9689

Laboratory Results

Midwest Generation - Powerton Facility 13082 E Manito Rd

Pekin, IL 61554-8587 Attn : Joe Heredia

Sample No: 10122781-7		Collect Date 12/15/10 15:05				
Client ID : POWERTON	Site : MW-6	· · · · · · · · · · · · · · · · · · ·	Locator: GRAB			
Parameter	Qualifier	Result	Analysis Date	Analyst	Lab	
EPA 300.0 R2.1					PIA	
Chloride, Dissolved Fluoride, Dissolved Nitrate as N, Diss. Sulfate, Dissolved		180 mg/l 0.65 mg/l 0.037 mg/l 210 mg/l	12/16/10 21:13 12/16/10 21:13 12/16/10 21:13 12/16/10 21:13 12/16/10 21:48	lgjfa lgjfa lgjfa lgjfa		
SM (18) 2540C					PIA	
Solids, Total Dissolved, Filtered SM 4500 CN C/SW9012A		950 mg/l	12/16/10 08:39	GDM	PIA	
Cvanide, Dissolved	P<	0.005 mg/l	12/20/10 16:09	latth		
SW-846 6010B R2.0		·		Ū	PIA	
Iron. Dissolved		1600 ug/l	01/03/11 12:29	BAB		
SW-846 6020		-			PIA	
Antimony, Dissolved Arsenic, Dissolved Barium, Dissolved	<	3 ug/l 4.2 ug/l 110 ug/l	12/21/10 15:45 12/21/10 15:45 12/21/10 15:45	JMW JMW		
Beryllium, Dissolved Boron, Dissolved	<	1 ug/l 500 ug/l	12/21/10 15:45 12/21/10 15:45	JMW		
Cadmium, Dissolved Chromium, Dissolved	<	1 ug/l 6 ug/l	12/21/10 15:45 12/21/10 15:45	JMW JMW		
Cobalt, Dissolved	<	2 ug/l	12/21/10 15:45	JMW		
Lead Dissolved	<	3 ug/i 1 ug/i	12/21/10 15:45	JMW		
Manganese, Dissolved		680 ug/l	12/21/10 15:45	JMW		
Mercury, Dissolved Nickel, Dissolved	<	0.2 ug/l 9.1 ug/l	12/21/10 15:45 12/21/10 15:45	JMW JMW		
Selenium, Dissolved		3.4 Ug/I	12/21/10 15:45	JMVU IAUA(
Silver, Dissolved Thallium Dissolved	< .	⊃ug/i ∕ 1ua/i	12/21/10 15:45	VVIVIC.		
Zinc, Dissolved		6.4 ug/l	12/29/10 09:40	JMW		

2231 W. Altorfer Drive - Peoria, IL 61615 (309) 692-9688 - (800) 752-6651 - FAX (309) 692-9689

Laboratory Results

Midwest Generation - Powerton Facility 13082 E Manito Rd

Pekin, IL 61554-8587 Attn : Joe Heredia

Sample No: 10122781-8		Collect Date 12/15/10 15:45				
Client ID : POWERTON	Site: MW-8		Locator: GRAB			
Parameter	Qualifier	Result	Analysis Date	Analyst	Lab	
EPA 300.0 R2.1					PIA	
Chloride, Dissolved Fluoride, Dissolved Nitrate as N, Diss. Sulfate, Dissolved	<	180 mg/l 0.77 mg/l 0.02 mg/l 160 mg/l	12/16/10 22:06 12/16/10 22:06 12/16/10 22:06 12/16/10 22:41	lgifa lgifa lgifa lgifa		
SM (18) 2540C					PIA	
Solids, Total Dissolved, Filtered SM 4500 CN C/SW9012A		890 mg/l	12/16/10 08:39	GDM	PIA	
Cyanide, Dissolved	P<	0.005 mg/l	12/20/10 16:09	latth		
SW-846 6010B R2.0		· ·			PIA	
Iron, Dissolved		560 ug/l	01/03/11 12:31	BAB		
SW-846 6020		·			PIA	
Antimony, Dissolved Arsenic, Dissolved Parium, Dissolved	<	3 ug/l 5.2 ug/l	12/21/10 15:51 12/21/10 15:51 12/21/10 15:51	JMW JMW		
Beryllium, Dissolved Boron, Dissolved	<	1 ug/l 930 ug/l	12/21/10 15:51 12/21/10 15:51 12/21/10 15:51	JMVV JMW JMW		
Cadmium, Dissolved Chromium, Dissolved	<	1 ug/l 5.9 ug/l	12/21/10 15:51 12/21/10 15:51	JMW JMW		
Copper, Dissolved	< <	2 ug/l 3 ug/l	12/21/10 15:51 12/21/10 15:51	JMW		
Lead, Dissolved	<	1 ug/l	12/21/10 15:51	JMW		
Marganese, Dissolved Mercury, Dissolved Nickel, Dissolved	<	0.2 ug/l 11 ug/l	12/21/10 15:51 12/21/10 15:51 12/21/10 15:51	JMW JMW		
Selenium, Dissolved		3.6 ug/l	12/21/10 15:51	JMW		
Silver, Dissolved	<	5 ug/l	12/21/10 15:51	JMW		
I nallium, Dissolved Zinc, Dissolved	< <	1 ug/l 6 ug/l	12/21/10 15:51 12/29/10 09:43	JMW JMW		

2231 W. Altorfer Drive - Peoria, IL 61615 (309) 692-9688 - (800) 752-6651 - FAX (309) 692-9689

Laboratory Results

Midwest Generation - Powerton Facility 13082 E Manito Rd

Pekin, IL 61554-8587 Attn : Joe Heredia

Date Received : 12/15/10 16:45 Report Date 01/04/11 Customer # : 233203 P.O. Number : 21053.070 Facility :

This report shall not be reproduced, except in full, without the written approval of the laboratory.

PDC Laboratories participates in the following accreditation/certification and proficiency programs at the following locations. Endorsement by the Federal or State Government or their agencies is not implied.

PIA	PDC Laboratories - Peoria, IL
	NELAC Accreditation for Drinking Water, Wastewater, Hazardous and Solid Wastes Fields of Testing through IL EPA Lab No. 100230
	State of Illinois Bacteriological Analysis in Drinking Water Certified Lab Registry No. 17553
	Drinking Water Certifications: Indiana (C-IL-040); Kansas (E-10338); Missouri (00870); Wisconsin (998294430)
	Wastewater Certifications: Arkansas; Iowa (240); Kansas (E-10338); Wisconsin (998294430)
	Hazardous/Solid Waste Certifications: Arkansas; Kansas (E-10338); Wisconsin(998294430)
	UST Certification: Iowa (240)
SPMO	PDC Laboratories - Springfield, MO
	EPA DMR-QA Program
STL	PDC Laboratories - St. Louis, MO
	NELAC Accreditation for Wastewater, Hazardous and Solid Wastes Fields of Testing through IL EPA Lab No. 100253.

mann Certified by

Elaine Kaufman, Project Manager

PDC Laboratories

DATA QUALIFIERS APPLICABLE TO THE "STANDARD QC" PROGRAM

- A The presence of this analyte was confirmed using a second column but there was a disparity (> 40% RPD) between the two sets of results with no apparent chromatographic anomalies. The lower of the two results was reported.
- B _____ present in the method blank at _____.
- C The batch control sample failed to meet the required acceptance criteria.
- D Result obtained through analysis of a sample dilution.
- **E** Concentration exceeds the instrument calibration range.
- F Internal standard area failed to meet the required acceptance criteria in repeat instrumental analyses. Results should be interpreted as estimated concentrations.
- G The Method of Standard Additions (MSA) was used to quantify the concentration.
- H Test performed after the expiration of the appropriate regulatory/advisory maximum allowable hold time.
- J Estimated value; value between the MDL and the RDL.
- M Analyte failed to meet the required acceptance criteria for duplicate analysis.
- P Chemical preservation discrepancy noted at the time of analysis.
- **Q** Analyte failed to meet the required acceptance criteria for spike recovery in the Matrix Spike (MS) and Matrix Spike Duplicate (MSD) due to apparent matrix effects.
- R Analyte failed to meet the required acceptance criteria for relative percent difference (RPD) between the Matrix Spike and Matrix Spike Duplicate (MS/MSD).
- S Surrogate compound diluted below a reliable quantitation level.
- T Surrogate recovery failed to meet the required acceptance criteria in initial analysis. Sample was reextracted (if applicable) and re-analyzed, and the surrogate recovery was outside of the required acceptance criteria on the second analysis, also. Results should be interpreted as estimated concentrations.
- U Parameter was analyzed for, but not detected above the reporting limit.
- V Verification standard recovery failed to meet the required acceptance criteria on repeat instrumental analyses.
- W Surrogate recovery failed to meet the required acceptance criteria in initial analysis. Sample was reextracted (if applicable) beyond the maximum allowable hold time, and re-analyzed. The surrogate recovery was within the required acceptance criteria on this second analysis.

NA Not analyzed.

NR Not requested.

X Miscellaneous; see comments.

Revised: 10/05/05

2231 W. Altorfer Drive - Peoria, IL 61615 (309) 692-9688 - (800) 752-6651 - FAX (309) 692-9689

Laboratory Results

Midwest Generation - Powerton Facility	Date Received : 12/06/10 08:41
Powerton Station	Report Date 12/20/10
13082 E Manito Rd	Customer # : 233203
Pekin, IL 61554-8587	P.O. Number : 4500050814
Attn : Mark Kelly	Facility :

Sample No: 10121488-1		Collect Date : 12/06/10 07:49			
Client ID : GROUND WATER	Site : WELL #7		Locator: GRAB		
Parameter	Qualifier	Result	Analysis Date	Analyst	Lab
EPA 200.7 R4.4					PIA
Iron, Dissolved		8 mg/l	12/17/10 14:00	JMW	
EPA 300.0 R2.1					PIA
Chloride, Dissolved Fluoride, Dissolved Nitrate as N, Diss. Sulfate, Dissolved		170 mg/l 0.47 mg/l 0.043 mg/l 120 mg/l	12/06/10 15:21 12/06/10 15:21 12/06/10 15:21 12/06/10 15:21 12/06/10 16:32	lgjfa lgjfa lgjfa lgjfa	
SM (18) 2540C					PIA
Solids, Total Dissolved, Filtered		860 mg/l	12/07/10 09:10	GDM	D14
SM 4500 CN C/SW9012A					PIA
Cyanide, Dissolved	P <	0.005 mg/l	12/09/10 16:54	lgtth	
SW-846 6020					PIA
Antimony, Dissolved Arsenic, Dissolved Barium, Dissolved Beryllium, Dissolved Boron, Dissolved Cadmium, Dissolved Chromium, Dissolved Cobalt, Dissolved Copper, Dissolved Lead, Dissolved Manganese, Dissolved Mercury, Dissolved Nickel, Dissolved	. < < <	3 ug/l 26 ug/l 550 ug/l 1 ug/l 610 ug/l 2.6 ug/l 8.8 ug/l 17 ug/l 140 ug/l 39 ug/l 3500 ug/l 0.2 ug/l 45 ug/l	12/16/10 17:48 12/15/10 17:34 12/15/10 17:34 12/16/10 17:48 12/16/10 17:48 12/15/10 17:34 12/15/10 17:34 12/15/10 17:34 12/15/10 17:34 12/15/10 17:34 12/15/10 17:34 12/15/10 17:34	WML WML WML WML WML WML WML WML WML WML	
Selenium, Dissolved		4.3 ug/l	12/16/10 17:48	JMW	
Thallium, Dissolved Zinc, Dissolved	<	5 ug/l 1 ug/l 76 ug/l	12/16/10 17:48 12/16/10 17:48 12/15/10 17:34	WML WML	

2231 W. Altorfer Drive - Peoria, IL 61615 (309) 692-9688 - (800) 752-6651 - FAX (309) 692-9689

Laboratory Results

Midwest Generation - Powerton Facility Powerton Station 13082 E Manito Rd Pekin, IL 61554-8587 Attn : Mark Kelly Date Received : 12/06/10 08:41 Report Date 12/20/10 Customer # : 233203 P.O. Number : 4500050814 Facility :

This report shall not be reproduced, except in full, without the written approval of the laboratory.

PDC Laboratories participates in the following accreditation/certification and proficiency programs at the following locations. Endorsement by the Federal or State Government or their agencies is not implied.

PIA	PDC Laboratories - Peoria, IL
	NELAC Accreditation for Drinking Water, Wastewater, Hazardous and Solid Wastes Fields of Testing through IL EPA Lab No. 100230
	State of Illinois Bacteriological Analysis in Drinking Water Certified Lab Registry No. 17553
	Drinking Water Certifications: Indiana (C-IL-040); Kansas (E-10338); Missouri (00870); Wisconsin (998294430)
	Wastewater Certifications: Arkansas; Iowa (240); Kansas (E-10338); Wisconsin (998294430)
	Hazardous/Solid Waste Certifications: Arkansas; Kansas (E-10338); Wisconsin(998294430)
	UST Certification: Iowa (240)
SPMO	PDC Laboratories - Springfield, MO
	EPA DMR-QA Program
STL	PDC Laboratories - St. Louis, MO
L	NELAC Accreditation for Wastewater, Hazardous and Solid Wastes Fields of Testing through IL EPA Lab No. 100253.

Certified by Elaine Kaufman, Project Manager

PDC Laboratories

DATA QUALIFIERS APPLICABLE TO THE "STANDARD QC" PROGRAM

- A The presence of this analyte was confirmed using a second column but there was a disparity (> 40% RPD) between the two sets of results with no apparent chromatographic anomalies. The lower of the two results was reported.
- B _____ present in the method blank at _____.
- **C** The batch control sample failed to meet the required acceptance criteria.
- D Result obtained through analysis of a sample dilution.
- E Concentration exceeds the instrument calibration range.
- F Internal standard area failed to meet the required acceptance criteria in repeat instrumental analyses. Results should be interpreted as estimated concentrations.
- G The Method of Standard Additions (MSA) was used to quantify the concentration.
- H Test performed after the expiration of the appropriate regulatory/advisory maximum allowable hold time.
- J Estimated value; value between the MDL and the RDL.
- M Analyte failed to meet the required acceptance criteria for duplicate analysis.
- P Chemical preservation discrepancy noted at the time of analysis.
- **Q** Analyte failed to meet the required acceptance criteria for spike recovery in the Matrix Spike (MS) and Matrix Spike Duplicate (MSD) due to apparent matrix effects.
- **R** Analyte failed to meet the required acceptance criteria for relative percent difference (RPD) between the Matrix Spike and Matrix Spike Duplicate (MS/MSD).
- **S** Surrogate compound diluted below a reliable quantitation level.
- T Surrogate recovery failed to meet the required acceptance criteria in initial analysis. Sample was reextracted (if applicable) and re-analyzed, and the surrogate recovery was outside of the required acceptance criteria on the second analysis, also. Results should be interpreted as estimated concentrations.
- **U** Parameter was analyzed for, but not detected above the reporting limit.
- V Verification standard recovery failed to meet the required acceptance criteria on repeat instrumental analyses.
- W Surrogate recovery failed to meet the required acceptance criteria in initial analysis. Sample was reextracted (if applicable) beyond the maximum allowable hold time, and re-analyzed. The surrogate recovery was within the required acceptance criteria on this second analysis.

NA Not analyzed.

NR Not requested.

X Miscellaneous; see comments.

Revised: 10/05/05

2231 W. Altorfer Drive - Peoria, IL 61615 (309) 692-9688 - (800) 752-6651 - FAX (309) 692-9689

Laboratory Results

Midwest Generation - Powerton Facility 13082 E Manito Rd

Pekin, IL 61554-8587 Attn : Joe Heredia

Sample No: 10122963-1	Collect Date 12/16/10 09:05				
Client ID : POWERTON	Site : MW-09 Locator : GRAB				
Parameter	Qualifier	Result	Analysis Date	Analyst	Lab
EPA 300.0 R2.1					PIA
Chloride, Dissolved		25 mg/l	12/17/10 19:42	laifa	
Fluoride, Dissolved	<	0.25 mg/l	12/17/10 19:24	lgifa	
Nitrate as N, Diss.		2.9 mg/l	12/17/10 19:42	lgifa	
Nitrite as N, Diss.	<	0.15 mg/l	12/17/10 19:24	lgjfa	
Sulfate, Dissolved		110 mg/l	12/17/10 20:00	lgjfa	
SM (18) 2540C					PIA
Solids, Total Dissolved, Filtered		500 mg/l	12/17/10 14:34	GDM	
SM 4500 CN C/SW9012A					PIA
Cyanide, Dissolved	P<	0.005 mg/l	12/22/10 12:16	lgtth	
SW-846 6010B R2.0					PIA
Iron, Dissolved	<	10 ug/l	01/03/11 12:33	BAB	
SW-846 6020					PIA
Antimony, Dissolved	<	3 ug/l	12/21/10 16:33	JMW	
Arsenic, Dissolved	<	1 ug/l	12/21/10 16:33	JMW	
Barium, Dissolved		38 ug/l	12/21/10 16:33	JMW	
Beryllium, Dissolved	<	1 ug/l	12/21/10 16:33	JMW	
Boron, Dissolved		2100 ug/l	12/21/10 16:33	JMW	
Cadmium, Dissolved	<	1 ug/i	12/21/10 16:33	JMW	
Chromium, Dissolved	<	4 ug/l	12/21/10 16:33	JMW	
Cobalt, Dissolved	<	2 ug/l	12/21/10 16:33	JMW	
Copper, Dissolved	<	3 ug/l	12/21/10 16:33	JMW	
Lead, Dissolved	<	1 ug/l	12/21/10 16:33	JMW	
Manganese, Dissolved		230 ug/l	12/21/10 16:33	JMW	
Nickel, Dissolved		10 ug/l	12/21/10 16:33	JMW	
Selenium, Dissolved		2.4 ug/l	12/21/10 16:33	JMW	
Silver, Dissolved	<	5 ug/l	12/21/10 16:33	JMW	
Thallium, Dissolved	<	1 ug/l	12/21/10 16:33	JMW	
Zinc, Dissolved	<	6 ug/l	12/29/10 09:56	JMW	

2231 W. Altorfer Drive - Peoria, IL 61615 (309) 692-9688 - (800) 752-6651 - FAX (309) 692-9689

Laboratory Results

Midwest Generation - Powerton Facility 13082 E Manito Rd

Pekin, IL 61554-8587 Attn : Joe Heredia

Date Received : 12/16/10 17:10 Report Date 01/04/11 Customer # : 233203 P.O. Number : 21053.070 Facility :

This report shall not be reproduced, except in full, without the written approval of the laboratory.

PDC Laboratories participates in the following accreditation/certification and proficiency programs at the following locations. Endorsement by the Federal or State Government or their agencies is not implied.

PIA	PDC Laboratories - Peoria, IL
	NELAC Accreditation for Drinking Water, Wastewater, Hazardous and Solid Wastes Fields of Testing through IL EPA Lab No. 100230
	State of Illinois Bacteriological Analysis in Drinking Water Certified Lab Registry No. 17553
	Drinking Water Certifications: Indiana (C-IL-040); Kansas (E-10338); Missouri (00870); Wisconsin (998294430)
	Wastewater Certifications: Arkansas; Iowa (240); Kansas (E-10338); Wisconsin (998294430)
	Hazardous/Solid Waste Certifications: Arkansas; Kansas (E-10338); Wisconsin(998294430)
	UST Certification: Iowa (240)
SPMO	PDC Laboratories - Springfield, MO
	EPA DMR-QA Program
STL	PDC Laboratories - St. Louis, MO
	NELAC Accreditation for Wastewater, Hazardous and Solid Wastes Fields of Testing through IL EPA Lab No. 100253.

Certified by mann

Elaine Kaufman, Project Manager

PDC Laboratories

DATA QUALIFIERS APPLICABLE TO THE "STANDARD QC" PROGRAM

- A The presence of this analyte was confirmed using a second column but there was a disparity (> 40% RPD) between the two sets of results with no apparent chromatographic anomalies. The lower of the two results was reported.
- B _____ present in the method blank at _____.
- C The batch control sample failed to meet the required acceptance criteria.
- D Result obtained through analysis of a sample dilution.
- E Concentration exceeds the instrument calibration range.
- **F** Internal standard area failed to meet the required acceptance criteria in repeat instrumental analyses. Results should be interpreted as estimated concentrations.
- G The Method of Standard Additions (MSA) was used to quantify the concentration.
- H Test performed after the expiration of the appropriate regulatory/advisory maximum allowable hold time.
- J Estimated value; value between the MDL and the RDL.
- M Analyte failed to meet the required acceptance criteria for duplicate analysis.
- P Chemical preservation discrepancy noted at the time of analysis.
- **Q** Analyte failed to meet the required acceptance criteria for spike recovery in the Matrix Spike (MS) and Matrix Spike Duplicate (MSD) due to apparent matrix effects.
- R Analyte failed to meet the required acceptance criteria for relative percent difference (RPD) between the Matrix Spike and Matrix Spike Duplicate (MS/MSD).
- S Surrogate compound diluted below a reliable quantitation level.
- T Surrogate recovery failed to meet the required acceptance criteria in initial analysis. Sample was reextracted (if applicable) and re-analyzed, and the surrogate recovery was outside of the required acceptance criteria on the second analysis, also. Results should be interpreted as estimated concentrations.
- U Parameter was analyzed for, but not detected above the reporting limit.
- V Verification standard recovery failed to meet the required acceptance criteria on repeat instrumental analyses.
- W Surrogate recovery failed to meet the required acceptance criteria in initial analysis. Sample was reextracted (if applicable) beyond the maximum allowable hold time, and re-analyzed. The surrogate recovery was within the required acceptance criteria on this second analysis.

NA Not analyzed.

NR Not requested.

X Miscellaneous; see comments.

Revised: 10/05/05

-

.

.

.